skip to main content


Title: Increased tropical South Pacific western boundary current transport over the past century
Abstract

The wind-driven meridional overturning circulation between the tropical and subtropical oceans is important for regulating decadal-scale temperature fluctuations in the Pacific Ocean and globally. An acceleration of the overturning circulation can act to reduce global surface temperature as ocean stores more heat. The equatorward low-latitude western boundary current represents a key component of the meridional circulation cell in the Pacific and a major source of water mass for the Equatorial Undercurrent, yet long-term observations of its transport are scarce. Here we demonstrate that the15N/14N ratio recorded byPoritesspp. corals in the western tropical South Pacific is sensitive to the exchanges of water masses driven by the western boundary transport. Using a 94-year coral record from the Solomon Sea, we report that the15N/14N ratio declined as the global surface temperature rose. The record suggests that the South Pacific western boundary current has strengthened in the past century, and it may have contributed to the reported strengthening of the Equatorial Undercurrent. In addition, the15N/14N record shows strong decadal variability, indicative of weaker equatorial Pacific upwelling and stronger western boundary transport when the eastern equatorial Pacific is in the warm stage of the Pacific Decadal Oscillation.

 
more » « less
NSF-PAR ID:
10425888
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Geoscience
Volume:
16
Issue:
7
ISSN:
1752-0894
Page Range / eLocation ID:
p. 590-596
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Studies have suggested that the South Atlantic Ocean plays an important role in modulating climate at global and regional scales and thus could serve as a potential predictor of extreme rainfall and temperature events globally. To understand how propagating modes of variability influence the circulation of the subtropical gyre and the southward flowing Brazil Current (BC) at interannual frequencies, a Complex Empirical Orthogonal Function (CEOF) analysis was performed on the satellite‐derived sea surface height (SSH). The first three CEOF modes explain about 23%, 16%, and 11% of the total interannual variability and show clear westward propagation with phase speeds comparable to that of theoretical baroclinic mode 1 Rossby waves. Results suggest that there is a change in the way energy is distributed among the modes before and after 2005. Before 2005, the SSH variability in the western boundary in the South Atlantic and the volume transport of the BC are more closely linked to the first and the second modes, while the third mode dominates after 2005. This change in energy distribution around 2005 is associated with the recent El Niño‐Southern Oscillation (ENSO) regime shift in the Pacific Ocean via atmospheric teleconnections. We found that the first CEOF mode is strongly correlated with eastern Pacific (i.e., canonical) ENSO events and the Pacific Decadal Oscillation, whereas the third CEOF is correlated to central Pacific (i.e., Modoki) ENSO. These results are useful to understand the overall dynamics of the South Atlantic and to potentially improve predictability of Meridional Overturning Circulation and monsoon pattern changes around the world.

     
    more » « less
  2. International Ocean Discovery Program Expedition 361 drilled six sites on the southeast African margin (southwest Indian Ocean) and in the Indian-Atlantic Ocean gateway, from 30 January to 31 March 2016. In total, 5175 m of core was recovered, with an average recovery of 102%, during 29.7 days of on-site operations. The sites, situated in the Mozambique Channel at locations directly influenced by discharge from the Zambezi and Limpopo River catchments, the Natal Valley, the Agulhas Plateau, and Cape Basin, were targeted to reconstruct the history of the greater Agulhas Current system over the past ~5 My. The Agulhas Current is the strongest western boundary current in the Southern Hemisphere, transporting some 70 Sv of warm, saline surface water from the tropical Indian Ocean along the East African margin to the tip of Africa. Exchanges of heat and moisture with the atmosphere influence southern African climates, including individual weather systems such as extratropical cyclone formation in the region and rainfall patterns. Recent ocean model and paleoceanographic data further point at a potential role of the Agulhas Current in controlling the strength and mode of the Atlantic Meridional Overturning Circulation (AMOC) during the Late Pleistocene. Spillage of saline Agulhas water into the South Atlantic stimulates buoyancy anomalies that may influence basin-wide AMOC, with implications for convective activity in the North Atlantic and global climate change. The main objectives of the expedition were to establish the role of the Agulhas Current in climatic changes during the Pliocene–Pleistocene, specifically to document the dynamics of the Indian-Atlantic Ocean gateway circulation during this time, to examine the connection of the Agulhas leakage and AMOC, and to address the influence of the Agulhas Current on African terrestrial climates and coincidences with human evolution. Additionally, the expedition set out to fulfill the needs of Ancillary Project Letter number 845, consisting of high-resolution interstitial water sampling to help constrain the temperature and salinity profiles of the ocean during the Last Glacial Maximum. The expedition made major strides toward fulfilling each of these objectives. The recovered sequences allowed generation of complete spliced stratigraphic sections that range from 0 to between ~0.13 and 7 Ma. This sediment will provide decadal- to millennial-scale climatic records that will allow answering the paleoceanographic and paleoclimatic questions set out in the drilling proposal. 
    more » « less
  3. null (Ed.)
    International Ocean Discovery Program (IODP) Expedition 361 drilled six sites on the southeast African margin and in the Indian-Atlantic ocean gateway, southwest Indian Ocean, from 30 January to 31 March 2016. In total, 5175 m of core was recovered, with an average recovery of 102%, during 29.7 days of on-site operations. The sites, situated in the Mozambique Channel at locations directly influenced by discharge from the Zambezi and Limpopo River catchments, the Natal Valley, the Agulhas Plateau, and Cape Basin, were targeted to reconstruct the history of the greater Agulhas Current system over the past ~5 my. The Agulhas Current is the strongest western boundary current in the Southern Hemisphere, transporting some 70 Sv of warm, saline surface water from the tropical Indian Ocean along the East African margin to the tip of Africa. Exchanges of heat and moisture with the atmosphere influence southern African climates, including individual weather systems such as extratropical cyclone formation in the region and rainfall patterns. Recent ocean model and paleoceanographic data further point at a potential role of the Agulhas Current in controlling the strength and mode of the Atlantic Meridional Overturning Circulation (AMOC) during the Late Pleistocene. Spillage of saline Agulhas water into the South Atlantic stimulates buoyancy anomalies that act as control mechanisms on the basin-wide AMOC, with implications for convective activity in the North Atlantic and global climate change. The main objectives of the expedition were to establish the sensitivity of the Agulhas Current to climatic changes during the Pliocene–Pleistocene, to determine the dynamics of the Indian-Atlantic gateway circulation during this time, to examine the connection of the Agulhas leakage and AMOC, and to address the influence of the Agulhas Current on African terrestrial climates and coincidences with human evolution. Additionally, the expedition set out to fulfill the needs of the Ancillary Project Letter, consisting of high-resolution interstitial water samples that will constrain the temperature and salinity profiles of the ocean during the Last Glacial Maximum. The expedition made major strides toward fulfilling each of these objectives. The recovered sequences allowed generation of complete spliced stratigraphic sections that span from 0 to between ~0.13 and 7 Ma. This sediment will provide decadal- to millennial-scale climatic records that will allow answering the paleoceanographic and paleoclimatic questions set out in the drilling proposal. 
    more » « less
  4. Abstract

    The Solomon Sea is a marginal sea in the western Pacific warm pool that contains the South Pacific low latitude western boundary currents. These low latitude western boundary currents chiefly exit the Solomon Sea through three channels (Vitiaz Strait, St. George's Channel, and Solomon Strait) and serve as the primary source water for the Equatorial Undercurrent. Simulations have shown that transport partitioning between the straits determines the water mass structure of the Equatorial Undercurrent, but the relative contributions of transport through each strait have not been observed before. As part of the Southwest Pacific Ocean Circulation and Climate Experiment, an array of moorings was deployed simultaneously in the three outflow channels of the Solomon Sea from July 2012 until March 2014 to resolve transport and water properties in each strait. Above deep isopycnals (σ0 ≤ 27.5), Vitiaz and Solomon Straits account for 54.2% and 36.2% of the mean transport, respectively, with the remaining 9.6% exiting through St. George's Channel. The strongest subinertial transport variability is observed in Solomon Strait and dominates total Solomon Sea transport variability, and a significant fraction of this variability is at intraseasonal time scales. Finally, a previously unobserved deep current at 1,500‐m depth is found to enter the Solomon Sea through Solomon Strait, with a deployment‐mean transport of 4.6 Sv (Sv ≡106m3/s).

     
    more » « less
  5. Human alteration of the global nitrogen cycle intensified over the 1900s. Model simulations suggest that large swaths of the open ocean, including the North Atlantic and the western Pacific, have already been affected by anthropogenic nitrogen through atmospheric transport and deposition. Here we report an ∼130-year-long record of the15N/14N of skeleton-bound organic matter in a coral from the outer reef of Bermuda, which provides a test of the hypothesis that anthropogenic atmospheric nitrogen has significantly augmented the nitrogen supply to the open North Atlantic surface ocean. The Bermuda15N/14N record does not show a long-term decline in the Anthropocene of the amplitude predicted by model simulations or observed in a western Pacific coral15N/14N record. Rather, the decadal variations in the Bermuda15N/14N record appear to be driven by the North Atlantic Oscillation, most likely through changes in the formation rate of Subtropical Mode Water. Given that anthropogenic nitrogen emissions have been decreasing in North America since the 1990s, this study suggests that in the coming decades, the open North Atlantic will remain minimally affected by anthropogenic nitrogen deposition.

     
    more » « less