skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reconstructing signaling pathways using regular language constrained paths
Abstract MotivationHigh-quality curation of the proteins and interactions in signaling pathways is slow and painstaking. As a result, many experimentally detected interactions are not annotated to any pathways. A natural question that arises is whether or not it is possible to automatically leverage existing pathway annotations to identify new interactions for inclusion in a given pathway. ResultsWe present RegLinker, an algorithm that achieves this purpose by computing multiple short paths from pathway receptors to transcription factors within a background interaction network. The key idea underlying RegLinker is the use of regular language constraints to control the number of non-pathway interactions that are present in the computed paths. We systematically evaluate RegLinker and five alternative approaches against a comprehensive set of 15 signaling pathways and demonstrate that RegLinker recovers withheld pathway proteins and interactions with the best precision and recall. We used RegLinker to propose new extensions to the pathways. We discuss the literature that supports the inclusion of these proteins in the pathways. These results show the broad potential of automated analysis to attenuate difficulties of traditional manual inquiry. Availability and implementationhttps://github.com/Murali-group/RegLinker. Supplementary informationSupplementary data are available at Bioinformatics online.  more » « less
Award ID(s):
1759858
PAR ID:
10425983
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Bioinformatics
Volume:
35
Issue:
14
ISSN:
1367-4803
Page Range / eLocation ID:
p. i624-i633
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A major challenge in molecular systems biology is to understand how proteins work to transmit external signals to changes in gene expression. Computationally reconstructing these signaling pathways from protein interaction networks can help understand what is missing from existing pathway databases. We formulate a new pathway reconstruction problem, one that iteratively grows directed acyclic graphs (DAGs) from a set of starting proteins in a protein interaction network. We present an algorithm that provably returns the optimal DAGs for two different cost functions and evaluate the pathway reconstructions when applied to six diverse signaling pathways from the NetPath database. The optimal DAGs outperform an existing k-shortest paths method for pathway reconstruction, and the new reconstructions are enriched for different biological processes. Growing DAGs is a promising step toward reconstructing pathways that provably optimize a specific cost function. 
    more » « less
  2. Abstract MotivationMembrane proteins are encoded by approximately one fifth of human genes but account for more than half of all US FDA approved drug targets. Thanks to new technological advances, the number of membrane proteins archived in the PDB is growing rapidly. However, automatic identification of membrane proteins or inference of membrane location is not a trivial task. ResultsWe present recent improvements to the RCSB Protein Data Bank web portal (RCSB PDB, rcsb.org) that provide a wealth of new membrane protein annotations integrated from four external resources: OPM, PDBTM, MemProtMD and mpstruc. We have substantially enhanced the presentation of data on membrane proteins. The number of membrane proteins with annotations available on rcsb.org was increased by ∼80%. Users can search for these annotations, explore corresponding tree hierarchies, display membrane segments at the 1D amino acid sequence level, and visualize the predicted location of the membrane layer in 3D. Availability and implementationAnnotations, search, tree data and visualization are available at our rcsb.org web portal. Membrane visualization is supported by the open-source Mol* viewer (molstar.org and github.com/molstar/molstar). Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less
  3. Abstract BackgroundLegumes utilize a long-distance signaling feedback pathway, termed Autoregulation of Nodulation (AON), to regulate the establishment and maintenance of their symbiosis with rhizobia. Several proteins key to this pathway have been discovered, but the AON pathway is not completely understood. ResultsWe report a new hypernodulating mutant,defective in autoregulation, with disruption of a gene,DAR(Medtr2g450550/MtrunA17_Chr2g0304631), previously unknown to play a role in AON. Thedar-1mutant produces ten-fold more nodules than wild type, similar to AON mutants with disruptedSUNNgene function. As insunnmutants, suppression of nodulation by CLE peptides MtCLE12 and MtCLE13 is abolished indar. Furthermore,dar-1also shows increased root length colonization by an arbuscular mycorrhizal fungus, suggesting a role for DAR in autoregulation of mycorrhizal symbiosis (AOM). However, unlikeSUNNwhich functions in the shoot to control nodulation,DARfunctions in the root. ConclusionsDARencodes a membrane protein that is a member of a small protein family inM. truncatula. Our results suggest that DAR could be involved in the subcellular transport of signals involved in symbiosis regulation, but it is not upregulated during symbiosis.DARgene family members are also present in Arabidopsis, lycophytes, mosses, and microalgae, suggesting the AON and AOM may use pathway components common to other plants, even those that do not undergo either symbiosis. 
    more » « less
  4. Abstract Background:Protein presence information is an essential component of biological pathway identification. Presence of certain enzymes in an organism points towards the metabolic pathways that occur within it, whereas the absence of these enzymes indicates either the existence of alternative pathways or a lack of these pathways altogether. The same inference applies to regulatory pathways such as gene regulation and signal transduction. Protein presence information therefore forms the basis for biological pathway studies, and patterns in presence-absence across multiple organisms allow for comparative pathway analyses. Results:Here we present ProTaxoVis, a novel bioinformatic tool that extracts protein presence information from database queries and maps it to a taxonomic tree or heatmap. ProTaxoVis generates a large-scale overview of presence patterns in taxonomic clades of interest. This overview reveals protein distribution patterns, and this can be used to deduce pathway evolution or to probe other biological questions. ProTaxoVis combines and filters sequence query results to extract information on the distribution of proteins and translates this information into two types of visual outputs: taxonomic trees and heatmaps. The trees supplement their topology with scaled pie-chart representations per node of the presence of target proteins and combinations of these proteins, such that patterns in taxonomic groups can easily be identified. The heatmap visualisation shows presence and conservation of these proteins for a user-determined set of species, allowing for a more detailed view over a larger group of proteins as compared to the trees. ProTaxoVis also allows for visual quality checks of hits based on a coverage plot and a length histogram, which can be used to determine e-value and minimum protein length cutoffs. Tabular output of resulting data from the query, combined, and heatmap building step are saved and easily accessible for further analyses. Conclusions:We evaluate our tool with the phosphoribosyltransferases, a transferase enzyme family with notable distribution patterns amongst organisms of varying complexities and across Eukaryota, Bacteria, and Archaea. ProTaxoVis is open-source and available at:https://github.com/MolecularBioinformatics/ProTaxoVis. 
    more » « less
  5. Newman, Dianne K (Ed.)
    ABSTRACT Quorum sensing (QS) is a population density-dependent mechanism of intercellular communication, whereby microbes secrete and detect signals to regulate behaviors such as virulence and biofilm formation. Although QS is well-studied in bacteria, little is known about cell-cell communication in archaea. The model archaeonHaloferax volcaniican transition from motile rod-shaped cells to non-motile disks as population density increases. In this report, we demonstrate that this transition is induced by a secreted small molecule present in cell-free conditioned medium (CM). The CM also elicits a response from a bacterial QS bioreporter, suggesting the potential for inter-domain crosstalk. To investigate theHfx. volcaniiQS response, we performed quantitative proteomics and detected significant differential abundances of 236 proteins in the presence of CM, including proteins involved in cell structure, motility, glycosylation, and two-component systems. We also demonstrate that a mutant lacking the cell shape regulatory factor DdfA does not undergo shape and motility transitions in the presence of CM, allowing us to identify protein abundance changes in the QS response pathway separate from those involved in shape and motility. In the ∆ddfAstrain, only 110 proteins had significant differential abundance, and comparative analysis of these two proteomics experiments enabled us to identify proteins dependent on and independent of DdfA in the QS response pathway. Our study provides the first detailed analysis of QS pathways in any archaeon, strengthening our understanding of archaeal communication as well as providing the framework for studying intra- and interdomain crosstalk. IMPORTANCEUnderstanding the complex signaling networks in microbial communities has led to many invaluable applications in medicine and industry. Yet, while archaea are ubiquitous and play key roles in nutrient cycling, little is known about the roles of archaeal intra- and interspecies cell-cell communication in environments such as the human, soil, and marine microbiomes. In this study, we established the first robust system for studying quorum sensing in archaea by using the model archaeonHaloferax volcanii. We demonstrated that different behaviors, such as cell shape and motility, are mediated by a signal molecule, and we uncovered key regulatory components of the signaling pathway. This work advances our understanding of microbial communication, shedding light on archaeal intra- and interdomain interactions, and contributes to a more complete picture of the interconnected networks of life on Earth. 
    more » « less