skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: The Challenges of Blockchain-based Naming Systems for Malware Defenders
Successful malware campaigns often rely on the ability of infected hosts to locate and contact their command-and-control (C2) servers. Malware campaigns often use DNS domains for this purpose, but DNS domains may be taken down by the registrar that sold them. In response to this threat, malware operators have begun using blockchain-based naming systems to store C2 server names. Blockchain naming systems are a threat to malware defenders because they are not subject to a centralized authority, such as a registrar, that can take down abused domains, either voluntarily or under legal pressure. In fact, blockchains are robust against a variety of interventions that work on DNS domains, which is bad news for defenders. We analyze the ecosystem of blockchain naming systems and identify new locations for defenders to stage interventions against malware. In particular, we find that malware is obligated to use centralized or semi-centralized infrastructure to connect to blockchain naming systems and modify the records stored within. In fact, scattered interventions have already been staged against this centralized infrastructure: we present case studies of several such instances. We also present a study of how blockchain naming systems are currently abused by malware operators, and discuss the factors that would cause a blockchain naming system to become an unstoppable threat. We conclude that existing blockchain naming systems still provide opportunities for defenders to prevent malware from contacting its C2 servers.  more » « less
Award ID(s):
2152644
PAR ID:
10426036
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
APWG Symposium on Electronic Crime Research (eCrime)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Anycast has proven to be an effective mechanism to enhance resilience in the DNS ecosystem and for scaling DNS nameserver capacity, both in authoritative and the recursive resolver infrastructure. Since its adoption for root servers, anycast has mitigated the impact of failures and DDoS attacks on the DNS ecosystem. In this work, we quantify the adoption of anycast to support authoritative domain name service for top-level and second-level domains (TLDs and SLDs). Comparing two comprehensive anycast census datasets in 2017 and 2021, with DNS measurements captured over the same period, reveals that anycast adoption is increasing, driven by a few large operators. While anycast offers compelling resilience advantage, it also shifts some resilience risk to other aspects of the infrastructure. We discuss these aspects, and how the pervasive use of anycast merits a re-evaluation of how to measure DNS resilience. 
    more » « less
  2. nycast has proven to be an effective mechanism to enhance resilience in the DNS ecosystem and for scaling DNS nameserver capacity, both in authoritative and the recursive resolver infrastructure. Since its adoption for root servers, anycast has mitigated the impact of failures and DDoS attacks on the DNS ecosystem. In this work, we quantify the adoption of anycast to support authoritative domain name service for top-level and second-level domains (TLDs and SLDs). Comparing two comprehensive anycast census datasets in 2017 and 2021, with DNS measurements captured over the same period, reveals that anycast adoption is increasing, driven by a few large operators. While anycast offers compelling resilience advantage, it also shifts some resilience risk to other aspects of the infrastructure. We discuss these aspects, and how the pervasive use of anycast merits a re-evaluation of how to measure DNS resilience. 
    more » « less
  3. null (Ed.)
    Domain name system (DNS) resolves the IP addresses of domain names and is critical for IP networking. Recent denial-of-service (DoS) attacks on the Internet targeted the DNS system (e.g., Dyn), which has the cascading effect of denying the availability of the services and applications relying on the targeted DNS. In view of these attacks, we investigate the DoS on the DNS system and introduce the query-crafting threats where the attacker controls the DNS query payload (the domain name) to maximize the threat impact per query (increasing the communications between the DNS servers and the threat time duration), which is orthogonal to other DoS approaches to increase the attack impact such as flooding and DNS amplification. We model the DNS system using a state diagram and comprehensively analyze the threat space, identifying the threat vectors which include not only the random/invalid domains but also those using the domain name structure to combine valid strings and random strings. Query-crafting DoS threats generate new domain-name payloads for each query and force increased complexity in the DNS query resolution. We test the query-crafting DoS threats by taking empirical measurements on the Internet and show that they amplify the DoS impact on the DNS system (recursive resolver) by involving more communications and taking greater time duration. To defend against such DoS or DDoS threats, we identify the relevant detection features specific to query-crafting threats and evaluate the defense using our prototype in CloudLab. 
    more » « less
  4. While network attacks play a critical role in many advanced persistent threat (APT) campaigns, an arms race exists between the network defenders and the adversary: to make APT campaigns stealthy, the adversary is strongly motivated to evade the detection system. However, new studies have shown that neural network is likely a game-changer in the arms race: neural network could be applied to achieve accurate, signature-free, and low-false-alarm-rate detection. In this work, we investigate whether the adversary could fight back during the next phase of the arms race. In particular, noticing that none of the existing adversarial example generation methods could generate malicious packets (and sessions) that can simultaneously compromise the target machine and evade the neural network detection model, we propose a novel attack method to achieve this goal. We have designed and implemented the new attack. We have also used Address Resolution Protocol (ARP) Poisoning and Domain Name System (DNS) Cache Poisoning as the case study to demonstrate the effectiveness of the proposed attack. 
    more » « less
  5. Prof. Ninghui Li Editor in Chief, ACM Transactions (Ed.)
    Malware analysis is an essential task to understand infection campaigns, the behavior of malicious codes, and possible ways to mitigate threats. Malware analysis also allows better assessment of attacker’s capabilities, techniques, and processes. Although a substantial amount of previous work provided a comprehensive analysis of the international malware ecosystem, research on regionalized, country, and population-specific malware campaigns have been scarce. Moving towards addressing this gap, we conducted a longitudinal (2012-2020) and comprehensive (encompassing an entire population of online banking users) study of MS Windows desktop malware that actually infected Brazilian bank’s users. We found that the Brazilian financial desktop malware has been evolving quickly: it started to make use of a variety of file formats instead of typical PE binaries, relied on native system resources, and abused obfuscation technique to bypass detection mechanisms. Our study on the threats targeting a significant population on the ecosystem of the largest and most populous country in Latin America can provide invaluable insights that may be applied to other countries’ user populations, especially those in the developing world that might face cultural peculiarities similar to Brazil’s. With this evaluation, we expect to motivate the security community/industry to seriously considering a deeper level of customization during the development of next generation anti-malware solutions, as well as to raise awareness towards regionalized and targeted Internet threats. 
    more » « less