skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Uncertainty Aware Salted Kalman Filter: State Estimation for Hybrid Systems with Uncertain Guards
In this paper, we present a method for updating robotic state belief through contact with uncertain surfaces and apply this update to a Kalman filter for more accurate state estimation. Examining how guard surface uncertainty affects the time spent in each mode, we derive a novel guard saltation matrix- which maps perturbations prior to hybrid events to perturbations after - accounting for additional variation in the resulting state. Additionally, we propose the use of parameterized reset functions - capturing how unknown parameters change how states are mapped from one mode to the next - the Jacobian of which accounts for additional uncertainty in the resulting state. The accuracy of these mappings is shown by simulating sampled distributions through uncertain transition events and comparing the resulting covariances. Finally, we integrate these additional terms into the “uncertainty aware Salted Kalman Filter”, uaSKF, and show a peak reduction in average estimation error by 24–60% on a variety of test conditions and systems.  more » « less
Award ID(s):
1943900
PAR ID:
10426109
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE/RSJ Intl. Conference on Intelligent Robots and Systems
Page Range / eLocation ID:
8821 to 8828
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Designing robust algorithms in the face of estimation uncertainty is a challenging task. Indeed, controllers seldom consider estimation uncertainty and only rely on the most likely estimated state. Consequently, sudden changes in the environment or the robot’s dynamics can lead to catastrophic behaviors. Leveraging recent results in risk-sensitive optimal control, this paper presents a risk-sensitive Extended Kalman Filter that can adapt its estimation to the control objective, hence allowing safe output-feedback Model Predictive Control (MPC). By taking a pessimistic estimate of the value function resulting from the MPC controller, the filter provides increased robustness to the controller in phases of uncertainty as compared to a standard Extended Kalman Filter (EKF). The filter has the same computational complexity as an EKF and can be used for real-time control. The paper evaluates the risk-sensitive behavior of the proposed filter when used in a nonlinear MPC loop on a planar drone and industrial manipulator in simulation, as well as on an external force estimation task on a real quadruped robot. These experiments demonstrate the ability of the approach to significantly improve performance in face of uncertainties. 
    more » « less
  2. Uwe Sauer, Dirk (Ed.)
    A B S T R A C T This paper proposes a model for parameter estimation of Vanadium Redox Flow Battery based on both the electrochemical model and the Equivalent Circuit Model. The equivalent circuit elements are found by a newly proposed optimization to minimized the error between the Thevenin and KVL-based impedance of the equivalent circuit. In contrast to most previously proposed circuit models, which are only introduced for constant current charging, the proposed method is applicable for all charging procedures, i.e., constant current, constant voltage, and constant current-constant voltage charging procedures. The proposed model is verified on a nine-cell VRFB stack by a sample constant current-constant voltage charging. As observed, in constant current charging mode, the terminal voltage model matches the measured data closely with low deviation; however, the terminal voltage model shows discrepancies with the measured data of VRFB in constant voltage charging. To improve the proposed circuit model’s discrepancies in constant voltage mode, two Kalman filters, i.e., hybrid extended Kalman filter and particle filter estimation algorithms, are used in this study. The results show the accuracy of the proposed equivalent with an average deviation of 0.88% for terminal voltage model estimation by the extended KF-based method and the average deviation of 0.79% for the particle filter-based estimation method, while the initial equivalent circuit has an error of 7.21%. Further, the proposed procedure extended to estimate the state of charge of the battery. The results show an average deviation of 4.2% in estimating the battery state of charge using the PF method and 4.4% using the hybrid extended KF method, while the electrochemical SoC estimation method is taken as the reference. These two Kalman Filter based methods are more accurate compared to the average deviation of state of charge using the Coulomb counting method, which is 7.4%. 
    more » « less
  3. In this paper, a constrained cooperative Kalman filter is developed to estimate field values and gradients along trajectories of mobile robots collecting measurements. We assume the underlying field is generated by a polynomial partial differential equation with unknown time-varying parameters. A long short-term memory (LSTM) based Kalman filter, is applied for the parameter estimation leveraging the updated state estimates from the constrained cooperative Kalman filter. Convergence for the constrained cooperative Kalman filter has been justified. Simulation results in a 2-dimensional field are provided to validate the proposed method. 
    more » « less
  4. In this letter we present Hybrid iterative Linear Quadratic Estimation (HiLQE), an optimization based offline state estimation algorithm for hybrid dynamical systems. We utilize the saltation matrix, a first order approximation of the variational update through an event driven hybrid transition, to calculate gradient information through hybrid events in the backward pass of an iterative linear quadratic optimization over state estimates. This enables accurate computation of the value function approximation at each timestep. Additionally, the forward pass in the iterative algorithm is augmented with hybrid dynamics in the rollout. A reference extension method is used to account for varying impact times when comparing states for the feedback gain in noise calculation. The proposed method is demonstrated on an ASLIP hopper system with position measurements. In comparison to the Salted Kalman Filter (SKF), the algorithm presented here achieves a maximum of 63.55% reduction in estimation error magnitude over all state dimensions near impact events. 
    more » « less
  5. Abstract We derive a generalization of the Kalman filter that allows for non‐Gaussian background and observation errors. The Gaussian assumption is replaced by considering that the errors come from a mixed distribution of Gaussian, lognormal, and reverse lognormal random variables. We detail the derivation for reverse lognormal errors and extend the results to mixed distributions, where the number of Gaussian, lognormal, and reverse lognormal state variables can change dynamically every analysis time. We test the dynamical mixed Kalman filter robustly on two different systems based on the Lorenz 1963 model, and demonstrate that non‐Gaussian techniques generally improve the analysis skill if the observations are sparse and uncertain, compared with the Gaussian Kalman filter. 
    more » « less