In many social animals, individuals derive fitness benefits from close social bonds, which are often formed among kin of the philopatric sex. Hamadryas baboons, however, exhibit a hierarchical, multilevel social system where both sexes disperse from their natal one‐male‐unit (OMU). Although this would seem to hinder maintenance of kin ties, both sexes appear largely philopatric at the higher order band and clan levels, possibly allowing for bonds with same sex kin by both males and females. In order to investigate the possibility of kin bonds in hamadryas baboons, we identified kin dyads in a band without known pedigree information using a large panel of genetic markers: 1 Y‐linked, 4 X‐linked, and 23 autosomal microsatellites and part of the mitochondrial hypervariable region I. With these data, we performed a kinship analysis while accounting for misclassification rates through simulations and determined kinship among two types of dyads: leader and follower males and female dyads within OMUs. Leader and follower males were maternal relatives more often than expected by chance, suggesting that kinship plays a role in the formation of these relationships. Moreover, maternal female relatives were found in the same OMU more often than expected by chance, indicating that females may be motivated to maintain post‐dispersal contact with maternal female kin. Our results suggest that hamadryas baboons can recognize maternal kin and that kin selection has contributed to shaping their complex social system. This implies that an ancestral maternal kin bias has been retained in hamadryas society. Am. J. Primatol. 78:731–744, 2016. © 2016 Wiley Periodicals, Inc.
- Award ID(s):
- 1122321
- NSF-PAR ID:
- 10426236
- Date Published:
- Journal Name:
- eLife
- Volume:
- 11
- ISSN:
- 2050-084X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Dispersal has far‐reaching implications for individuals, populations, and communities, especially in sessile organisms. Escaping competition with conspecifics and with kin are theorized to be key factors leading to dispersal as an adaptation. However, manipulative approaches in systems in which adults are sessile but offspring have behaviors is required for a more complete understanding of how competition affects dispersal. Here, we integrate a series of experiments to study how dispersal affects the density and relatedness of neighbors, and how the density and relatedness of neighbors in turn affects fitness. In a marine bryozoan, we empirically estimated dispersal kernels and found that most larvae settled within ~1 m of the maternal colony, although some could potentially travel at least 10s of meters. Larvae neither actively preferred or avoided conspecifics or kin at settlement. We experimentally determined the effects of spreading sibling larvae by manipulating the density and relatedness of settlers and measuring components of fitness in the field. We found that settler density reduced maternal fitness when settler neighbors were siblings compared with when neighbors were unrelated or absent. Genetic markers also identified very few half sibs (and no full sibs) in adults from the natural population, and rarely close enough to directly interact. In this system, dispersal occurs over short distances (meters) yet, in contrast with expectations, there appears to be limited kinship between adult neighbors. Our results suggest that the limited dispersal increases early offspring mortality when siblings settle next to each other, rather than next to unrelated conspecifics, potentially reducing kinship in adult populations. High offspring production and multiple paternity could further dilute kinship at settlement and reduce selection for dispersal beyond the scale of 10s of meters.
-
Abstract Offspring that delay dispersal in cooperatively breeding species have been hypothesized to gain direct fitness benefits via parental facilitation—being passively tolerated on their natal territory by their parents—thereby enjoying enhanced survival and increased probability of acquiring a breeding position in the population. Here we describe active facilitation in the acorn woodpecker (
Melanerpes formicivorus ) by parents and siblings assisting the dispersal of helpers in their social group. Helpers in this species compete for reproductive opportunities in “power struggles” that take place when all breeders of one sex die or disappear, creating a reproductive vacancy. Individuals compete at power struggles in coalitions of relatives, in which larger coalitions are more likely to be victorious. Based on observations of banded birds, we found that an estimated 26% of individuals competing as part of a winning coalition at a power struggle returned to their home territory at its conclusion, suggesting that they were facilitating the dispersal of kin (generally parents or siblings) that stayed to become breeders on the new territory. In at least one group, sibling facilitation was reciprocated; that is, a bird that was helped at a power struggle by a sibling joined that same sibling as part of a coalition at a subsequent power struggle. Dispersal facilitation is a novel means by which parents can nepotistically enhance the direct fitness of offspring and siblings can enhance each other’s inclusive fitness in this highly social species.Significance statement Parental facilitation—being passively tolerated on the natal territory—may provide significant direct fitness benefits to helpers in cooperatively breeding species. We describe active facilitation of helper dispersal in the acorn woodpecker, where helpers compete in coalitions for reproductive opportunities at “power struggles” following the death or disappearance of all breeders of one sex. About one-fourth of individuals—including both parents and siblings—competing at power struggles were apparently facilitators who assisted related helpers by participating in the power struggle but then returned to their home territory rather than stay to breed on the new territory. In at least one group, dispersal facilitation was reciprocated; that is, a bird that was helped at a power struggle by a relative later joined that same relative as part of a coalition at a subsequent power struggle. Active dispersal facilitation by parents and siblings is an important, previously unrecognized, form of nepotistic behavior in this highly social species.
-
This chapter compares kinship terminologies and kinship practices in eight Alor-Pantar languages forming a broad geographic and typological sample of the family. In spite of the close genealogical relationship between the languages, there is surprisingly little evidence of shared (cognate) kinship vocabulary, and the kinship systems exhibit great variation. The westernmost languages distinguish both maternal and paternal cross-cousins (children of opposite-sex siblings) as ideal marriage partners, while at the opposite extreme in the highlands of Alor are found languages which expressly forbid cross-cousin marriage. Even among languages whose kinship systems are roughly similar, the terms themselves are often not cognate. Likewise, cognate terms often have varying semantics across the languages. The current distribution of kinship terminologies suggests a recent drift toward symmetric exchange systems which distinguish both maternal and paternal cross-cousins, perhaps under the influence of neighboring Austronesian languages.more » « less
-
To address claims of human exceptionalism, we determine where humans fit within the greater mammalian distribution of reproductive inequality. We show that humans exhibit lower reproductive skew (i.e., inequality in the number of surviving offspring) among males and smaller sex differences in reproductive skew than most other mammals, while nevertheless falling within the mammalian range. Additionally, female reproductive skew is higher in polygynous human populations than in polygynous nonhumans mammals on average. This patterning of skew can be attributed in part to the prevalence of monogamy in humans compared to the predominance of polygyny in nonhuman mammals, to the limited degree of polygyny in the human societies that practice it, and to the importance of unequally held rival resources to women’s fitness. The muted reproductive inequality observed in humans appears to be linked to several unusual characteristics of our species—including high levels of cooperation among males, high dependence on unequally held rival resources, complementarities between maternal and paternal investment, as well as social and legal institutions that enforce monogamous norms.