Abstract Dispersal has far‐reaching implications for individuals, populations, and communities, especially in sessile organisms. Escaping competition with conspecifics and with kin are theorized to be key factors leading to dispersal as an adaptation. However, manipulative approaches in systems in which adults are sessile but offspring have behaviors is required for a more complete understanding of how competition affects dispersal. Here, we integrate a series of experiments to study how dispersal affects the density and relatedness of neighbors, and how the density and relatedness of neighbors in turn affects fitness. In a marine bryozoan, we empirically estimated dispersal kernels and found that most larvae settled within ~1 m of the maternal colony, although some could potentially travel at least 10s of meters. Larvae neither actively preferred or avoided conspecifics or kin at settlement. We experimentally determined the effects of spreading sibling larvae by manipulating the density and relatedness of settlers and measuring components of fitness in the field. We found that settler density reduced maternal fitness when settler neighbors were siblings compared with when neighbors were unrelated or absent. Genetic markers also identified very few half sibs (and no full sibs) in adults from the natural population, and rarely close enough to directly interact. In this system, dispersal occurs over short distances (meters) yet, in contrast with expectations, there appears to be limited kinship between adult neighbors. Our results suggest that the limited dispersal increases early offspring mortality when siblings settle next to each other, rather than next to unrelated conspecifics, potentially reducing kinship in adult populations. High offspring production and multiple paternity could further dilute kinship at settlement and reduce selection for dispersal beyond the scale of 10s of meters. 
                        more » 
                        « less   
                    
                            
                            Mountain gorillas maintain strong affiliative biases for maternal siblings despite high male reproductive skew and extensive exposure to paternal kin
                        
                    
    
            Evolutionary theories predict that sibling relationships will reflect a complex balance of cooperative and competitive dynamics. In most mammals, dispersal and death patterns mean that sibling relationships occur in a relatively narrow window during development and/or only with same-sex individuals. Besides humans, one notable exception is mountain gorillas, in which non-sex-biased dispersal, relatively stable group composition, and the long reproductive tenures of alpha males mean that animals routinely reside with both maternally and paternally related siblings, of the same and opposite sex, throughout their lives. Using nearly 40,000 hr of behavioral data collected over 14 years on 699 sibling and 1235 non-sibling pairs of wild mountain gorillas, we demonstrate that individuals have strong affiliative preferences for full and maternal siblings over paternal siblings or unrelated animals, consistent with an inability to discriminate paternal kin. Intriguingly, however, aggression data imply the opposite. Aggression rates were statistically indistinguishable among all types of dyads except one: in mixed-sex dyads, non-siblings engaged in substantially more aggression than siblings of any type. This pattern suggests mountain gorillas may be capable of distinguishing paternal kin but nonetheless choose not to affiliate with them over non-kin. We observe a preference for maternal kin in a species with a high reproductive skew (i.e. high relatedness certainty), even though low reproductive skew (i.e. low relatedness certainty) is believed to underlie such biases in other non-human primates. Our results call into question reasons for strong maternal kin biases when paternal kin are identifiable, familiar, and similarly likely to be long-term groupmates, and they may also suggest behavioral mismatches at play during a transitional period in mountain gorilla society. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1122321
- PAR ID:
- 10426236
- Date Published:
- Journal Name:
- eLife
- Volume:
- 11
- ISSN:
- 2050-084X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            This chapter compares kinship terminologies and kinship practices in eight Alor-Pantar languages forming a broad geographic and typological sample of the family. In spite of the close genealogical relationship between the languages, there is surprisingly little evidence of shared (cognate) kinship vocabulary, and the kinship systems exhibit great variation. The westernmost languages distinguish both maternal and paternal cross-cousins (children of opposite-sex siblings) as ideal marriage partners, while at the opposite extreme in the highlands of Alor are found languages which expressly forbid cross-cousin marriage. Even among languages whose kinship systems are roughly similar, the terms themselves are often not cognate. Likewise, cognate terms often have varying semantics across the languages. The current distribution of kinship terminologies suggests a recent drift toward symmetric exchange systems which distinguish both maternal and paternal cross-cousins, perhaps under the influence of neighboring Austronesian languages.more » « less
- 
            Taborsky, Michael (Ed.)Abstract The juvenile period is a challenging life-history stage, especially in species with a high degree of fission–fusion dynamics, such as bottlenose dolphins, where maternal protection is virtually absent. Here, we examined how juvenile male and female bottlenose dolphins navigate this vulnerable period. Specifically, we examined their grouping patterns, activity budget, network dynamics, and social associations in the absence of adults. We found that juveniles live in highly dynamic groups, with group composition changing every 10 min on average. Groups were generally segregated by sex, and segregation was driven by same-sex preference rather than opposite-sex avoidance. Juveniles formed strong associations with select individuals, especially kin and same-sex partners, and both sexes formed cliques with their preferred partners. Sex-specific strategies in the juvenile period reflected adult reproductive strategies, in which the exploration of potential social partners may be more important for males (which form long-term alliances in adulthood) than females (which preferentially associate with kin in adulthood). Females spent more time alone and were more focused on foraging than males, but still formed close same-sex associations, especially with kin. Males cast a wider social net than females, with strong same-sex associations and many male associates. Males engaged in more affiliative behavior than females. These results are consistent with the social bonds and skills hypothesis and suggest that delayed sexual maturity in species with relational social complexity may allow individuals to assess potential associates and explore a complex social landscape without the risks associated with sexual maturity (e.g., adult reproductive competition; inbreeding).more » « less
- 
            To address claims of human exceptionalism, we determine where humans fit within the greater mammalian distribution of reproductive inequality. We show that humans exhibit lower reproductive skew (i.e., inequality in the number of surviving offspring) among males and smaller sex differences in reproductive skew than most other mammals, while nevertheless falling within the mammalian range. Additionally, female reproductive skew is higher in polygynous human populations than in polygynous nonhumans mammals on average. This patterning of skew can be attributed in part to the prevalence of monogamy in humans compared to the predominance of polygyny in nonhuman mammals, to the limited degree of polygyny in the human societies that practice it, and to the importance of unequally held rival resources to women’s fitness. The muted reproductive inequality observed in humans appears to be linked to several unusual characteristics of our species—including high levels of cooperation among males, high dependence on unequally held rival resources, complementarities between maternal and paternal investment, as well as social and legal institutions that enforce monogamous norms.more » « less
- 
            Abstract Socioecological theory predicts that male parenting among mammals should be rare due to the large payoffs of prioritizing mating effort over parenting. Although these predictions are generally met, in some promiscuous primate species males overcome this by identifying their offspring, and providing benefits such as protection and resource access. Mountain gorillas, which often organize into multi-male groups, are an intriguing exception. Males frequently affiliate with infants despite not discriminating their own from other males’ offspring, raising questions about the function of this behavior. Here we demonstrate that, independent of multiple controls for rank, age, and siring opportunities, male gorillas who affiliated more with all infants, not only their own, sired more offspring than males who affiliated less with young. Predictive margins indicate males in the top affiliation tertile can expect to sire approximately five times more infants than males in the bottom tertile, across the course of their reproductive careers. These findings establish a link between males’ fitness and their associations with infants in the absence of kin discrimination or high paternity certainty, and suggest a strategy by which selection could generate more involved male parenting among non-monogamous species.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    