skip to main content


Title: Juvenile social dynamics reflect adult reproductive strategies in bottlenose dolphins
Abstract The juvenile period is a challenging life-history stage, especially in species with a high degree of fission–fusion dynamics, such as bottlenose dolphins, where maternal protection is virtually absent. Here, we examined how juvenile male and female bottlenose dolphins navigate this vulnerable period. Specifically, we examined their grouping patterns, activity budget, network dynamics, and social associations in the absence of adults. We found that juveniles live in highly dynamic groups, with group composition changing every 10 min on average. Groups were generally segregated by sex, and segregation was driven by same-sex preference rather than opposite-sex avoidance. Juveniles formed strong associations with select individuals, especially kin and same-sex partners, and both sexes formed cliques with their preferred partners. Sex-specific strategies in the juvenile period reflected adult reproductive strategies, in which the exploration of potential social partners may be more important for males (which form long-term alliances in adulthood) than females (which preferentially associate with kin in adulthood). Females spent more time alone and were more focused on foraging than males, but still formed close same-sex associations, especially with kin. Males cast a wider social net than females, with strong same-sex associations and many male associates. Males engaged in more affiliative behavior than females. These results are consistent with the social bonds and skills hypothesis and suggest that delayed sexual maturity in species with relational social complexity may allow individuals to assess potential associates and explore a complex social landscape without the risks associated with sexual maturity (e.g., adult reproductive competition; inbreeding).  more » « less
Award ID(s):
1755229
NSF-PAR ID:
10199197
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Taborsky, Michael
Date Published:
Journal Name:
Behavioral Ecology
Volume:
31
Issue:
5
ISSN:
1045-2249
Page Range / eLocation ID:
1159 to 1171
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Research on sex biases in longevity in mammals often assumes that male investment in competition results in a female survival advantage that is constant throughout life. We use 35 years of longitudinal data on 1003 wild bottlenose dolphins ( Tursiops aduncus ) to examine age-specific mortality, demonstrating a time-varying effect of sex on mortality hazard over the five-decade lifespan of a social mammal. Males are at higher risk of mortality than females during the juvenile period, but the gap between male and female mortality hazard closes in the mid-teens, coincident with the onset of female reproduction. Female mortality hazard is non-significantly higher than male mortality hazard in adulthood, resulting in a moderate male bias in the oldest age class. Bottlenose dolphins have an intensely male-competitive mating system, and juvenile male mortality has been linked to social competition. Contrary to predictions from sexual selection theory, however, male–male competition does not result in sustained male-biased mortality. As female dolphins experience high costs of sexual coercion in addition to long and energetically expensive periods of gestation and lactation, this suggests that substantial female investment in reproduction can elevate female mortality risk and impact sex biases in lifespan. 
    more » « less
  2. Abstract

    The social and mating systems of orangutans, one of our closest relatives, remain poorly understood. Orangutans (Pongospp.) are highly sexually dimorphic and females are philopatric and maintain individual, but overlapping home ranges, whereas males disperse, are non-territorial and wide-ranging, and show bimaturism, with many years between reaching sexual maturity and attaining full secondary sexual characteristics (including cheek pads (flanges) and emitting long calls). We report on 21 assigned paternities, among 35 flanged and 15 unflanged, genotyped male Bornean orangutans (Pongo pygmaeus wurmbii), studied from 2003 to 2018 in Tuanan (Central Kalimantan, Indonesia). All 10 infants born since mid-2003 with an already identified sire were sired by flanged males. All adult males ranged well beyond the study area (c. 1000 ha), and their dominance relations fluctuated even within short periods. However, 5 of the 10 identified sires had multiple offspring within the monitored area. Several sired over a period of c. 10 years, which overlapped with siring periods of other males. The long-calling behavior of sires indicated they were not consistently dominant over other males in the area around the time of known conceptions. Instead, when they were seen in the area, the known sires spent most of their time within the home ranges of the females whose offspring they sired. Overall, successful sires were older and more often resident than others.

    Significance statement

    It is difficult to assess reproductive success for individuals of long-lived species, especially for dispersing males, who cannot be monitored throughout their lives. Due to extremely long interbirth intervals, orangutans have highly male-skewed operational sex ratios and thus intensive male-male competition for every conception. Paternity analyses matched 21 immature Bornean orangutans with their most likely sire (only 10 of 50 genotyped males) in a natural population. Half of these identified sires had multiple offspring in the study area spread over periods of at least 10 years, despite frequently ranging outside this area. Dominance was a poor predictor of success, but, consistent with female mating tactics to reduce the risk of infanticide, known “sires” tended to have relatively high local presence, which seems to contribute to the males’ siring success. The results highlight the importance of large protected areas to enable a natural pattern of dispersal and ranging.

     
    more » « less
  3. Abstract

    Maternal effects are widespread in living organisms though little is known about whether they shape individual affiliative social behavior in primates. Further, it remains a question whether maternal effects on affiliative behavior differ by offspring sex, as they do in other physiological systems, especially in species with high levels of adult sexual dimorphism and divergence in social niches. We explored how direct and indirect experiences of maternal affiliative behavior during infancy predicted affiliative behavior approximately 1–6 years later during the juvenile period, using behavioral data from 41 wild blue monkey juveniles and their 29 mothers, and controlling for individual age, sex, and maternal rank. Female juveniles spent less time grooming with any partner and with peers the more maternal grooming they received during infancy, whereas males groomed more with any partner and with peers. Similarly, the more that mothers groomed with other adult females during subjects’ infancy, female subjects played less with peers, and male subjects played more as juveniles. Further, this maternal effect on social behavior appears specific to early life, as the same aspects of mothers’ sociality measured throughout subjects’ development did not predict juvenile behavior. Overall, our results suggest that both direct and indirect experience of mother's affiliative behavior during infancy influence an individual's affiliation later in life that sexes respond differently to the maternal affiliation, and that the first year of life is a critical window.

     
    more » « less
  4. Most animals develop from juveniles, which cannot reproduce, to sexually mature adults. The most obvious signs of this transition are changes in body shape and size. However, changes also take place in the brain that enable the animals to adapt their behavior to the demands of adulthood. For example, fully fed adult male roundworms will leave a food source to search for mates, whereas juvenile males will continue feeding. The transition to sexual maturity needs to be carefully timed. Too early, and the animal risks compromising key stages of development. Too late, and the animal may be less competitive in the quest for reproductive success. Cues in the environment, such as the presence of food and mates, interact with timing mechanisms in the brain to trigger sexual maturity. But how these mechanisms work – in particular where and how an animal keeps track of its developmental stage – is not well understood. In the roundworm species Caenorhabditis elegans, waves of gene activity, known collectively as the heterochronic pathway, determine patterns of cell growth as animals mature. Through further studies of these worms, Lawson et al. now show that these waves also control the time at which neural circuits mature. In addition, the waves of activity occur inside the nervous system itself, rather than in a tissue that sends signals to the nervous system. Moreover, they occur independently inside many different neurons. Each neuron thus has its own molecular clock for keeping track of development. Several of the genes critical for developmental timekeeping in worms are also found in mammals, including two genes that help to control when puberty starts in humans. If one of these genes – called MKRN3 – does not work correctly, it can lead to a condition that causes individuals to go through puberty several years earlier than normal. Studying the mechanisms identified in roundworms may help us to better understand this disorder. More generally, future work that builds on the results presented by Lawson et al. will help to reveal how environmental cues and gene activity interact to control when we become adults. 
    more » « less
  5. Barrett, Louise (Ed.)
    Abstract Direct pathogen and parasite transmission is fundamentally driven by a population’s contact network structure and its demographic composition and is further modulated by pathogen life-history traits. Importantly, populations are most often concurrently exposed to a suite of pathogens, which is rarely investigated, because contact networks are typically inferred from spatial proximity only. Here, we use 5 years of detailed observations of Indo-Pacific bottlenose dolphins (Tursiops aduncus) that distinguish between four different types of social contact. We investigate how demography (sex and age) affects these different social behaviors. Three of the four social behaviors can be used as a proxy for understanding key routes of direct pathogen transmission (sexual contact, skin contact, and aerosol contact of respiratory vapor above the water surface). We quantify the demography-dependent network connectedness, representing the risk of exposure associated with the three pathogen transmission routes, and quantify coexposure risks and relate them to individual sociability. Our results suggest demography-driven disease risk in bottlenose dolphins, with males at greater risk than females, and transmission route-dependent implications for different age classes. We hypothesize that male alliance formation and the divergent reproductive strategies in males and females drive the demography-dependent connectedness and, hence, exposure risk to pathogens. Our study provides evidence for the risk of coexposure to pathogens transmitted along different transmission routes and that they relate to individual sociability. Hence, our results highlight the importance of a multibehavioral approach for a more complete understanding of the overall pathogen transmission risk in animal populations, as well as the cumulative costs of sociality. 
    more » « less