skip to main content


This content will become publicly available on June 1, 2024

Title: Experiential Learning for Interdisciplinary Education on Vestibular System Models
The vestibular system (VS) allows humans to have a sense of balance and orientation. Within the VS, fluid displacement occurs within the ear canal, triggering nerve signals to be translated by the nervous system, allowing for the interpretation of the head's orientation. When there is a disturbance to this system, vestibular dysfunction occurs potentially causing vertigo and a loss of balance. It is estimated that 35 percent of adults 40 years or older in the United States have experienced vestibular dysfunction. The vestibular balance system poses a robust, unique topic for developing interdisciplinary education curricula as its function encapsulates many fundamental mechanical, chemical, biological, and physical phenomena that can be studied with engineering concepts and principles. In this work, we present a survey of models of the vestibular sensory system. Following which, selected models are presented in an experiential learning format for students to better understand the relationship and sensitivity of model parameters and external stimuli to physiological system behavior. By conducting simulations of these models, students can visualize outcomes, pose questions, and potentially identify areas of research interest. This paper is the outcome of an Innovations in Graduate Education project supported by the National Science Foundation. The authors are graduate students from three engineering majors from the University of Massachusetts Lowell and the University of the District of Columbia co-creating an educational module with faculty and experts on human balance. The developed module related to analyzing the vestibular balance system mechanics will be integrated into undergraduate courses across engineering departments in partnering institutions.  more » « less
Award ID(s):
2105718
NSF-PAR ID:
10426269
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the 2023 ASEE Annual Conference & Exposition
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The vestibular system (VS) allows humans to have a sense of balance and orientation. Within the VS, fluid displacement occurs within the ear canal, triggering nerve signals to be translated by the nervous system, allowing for the interpretation of the head's orientation. When there is a disturbance to this system, vestibular dysfunction occurs potentially causing vertigo and a loss of. balance. It is estimated that 35 percent of adults 40 years or older in the United States have experienced vestibular dysfunction. The vestibular balance system poses a robust, unique topic for developing interdisciplinary education curricula as its function encapsulates many fundamental mechanical, chemical, biological, and physical phenomena that can be studied with engineering concepts and principles. In this work, we present a survey of models of the vestibular sensory system. Following which, selected models are presented in an experiential learning format for students to better understand the relationship and sensitivity of model parameters and external stimuli to physiological system behavior. By conducting simulations of these models, students can visualize outcomes, pose questions, and potentially identify areas of research interest. This paper is the outcome of an Innovations in Graduate Education project supported by the National Science Foundation. The authors are graduate students from three engineering majors from the University of Massachusetts Lowell and the University of the District of Columbia co-creating an educational module with faculty and experts on human balance. The developed module related to analyzing the vestibular balance system mechanics will be integrated into undergraduate courses across engineering departments in partnering institutions. 
    more » « less
  2. Balance problems affect more than eight million adults, and the percentage of balance problems increases with age. Globally, the population is aging, making balance problems a relevant topic of investigation. Balance impairments are the primary cause of falls, which result in debilitating injuries, especially for the elderly population. There is a significant opportunity for students in engineering and other disciplines to explore and contribute to research and education in this area. In this work, a group of graduate students from electrical, industrial, and mechanical engineering present research that will be mapped into an educational module on this topic. This module is co-created with faculty and domain experts. Sensors of various types are being investigated for monitoring gait and identifying the propensity for losing balance. A survey of the state of the art of sensor technology pertaining to balance is conducted. Models of human balance during quiet standing are investigated. An interactive simulation tool is developed to allow students to vary the model parameters and gain an intuitive understanding of the engineering principles involved. For engineering students, this offers many opportunities to better understand how topics they study in engineering courses relate to a significant societal problem. For students in courses such as statics, dynamics, and control systems, the concepts of change in the center of mass, the center of pressure, the inverted pendulum, and stability can be reinforced in relation to the balance dynamics problem. This paper describes the framework that will be used in an educational module that will improve undergraduate engineering concepts through balance dynamics experiments and simulations, and present interdisciplinary research problems to graduate students. This study contributes to an Innovations in Graduate Education National Science Foundation research project. 
    more » « less
  3. Balance problems affect more than eight million adults, and the percentage of balance problems increases with age. Globally, the population is aging, making balance problems a relevant topic of investigation. Balance impairments are the primary cause of falls, which result in debilitating injuries, especially for the elderly population. There is a significant opportunity for students in engineering and other disciplines to explore and contribute to research and education in this area. In this work, a group of graduate students from electrical, industrial, and mechanical engineering present research that will be mapped into an educational module on this topic. This module is co-created with faculty and domain experts. Sensors of various types are being investigated for monitoring gait and identifying the propensity for losing balance. A survey of the state of the art of sensor technology pertaining to balance is conducted. Models of human balance during quiet standing are investigated. An interactive simulation tool is developed to allow students to vary the model parameters and gain an intuitive understanding of the engineering principles involved. For engineering students, this offers many opportunities to better understand how topics they study in engineering courses relate to a significant societal problem. For students in courses such as statics, dynamics, and control systems, the concepts of change in the center of mass, the center of pressure, the inverted pendulum, and stability can be reinforced in relation to the balance dynamics problem. This paper describes the framework that will be used in an educational module that will improve undergraduate engineering concepts through balance dynamics experiments and simulations, and present interdisciplinary research problems to graduate students. This study contributes to an Innovations in Graduate Education National Science Foundation research project. 
    more » « less
  4. Many historically minoritized graduate students, here defined as Women, Latinx and Black/African American students, in Science, Technology, Engineering and Math (STEM) experience unwelcome or even hostile ecosystems or environments. Many of the social expectations are that historically minoritized graduate students in STEM should assimilate or acclimate to the cultural, where assimilation/acclimation are defined as cultural conformation vs. social acceptance of a student authentic self/identity. They may also experience forms of continuous microaggressions and isolation. The effects of chronic external stressors, such as experiencing discrimination and social isolation, on increased mental health disorders and decreased physiological health is well known [1-3]. Yet, evidence-based practices of support systems specifically for graduate students from historically marginalized communities to reduce the effects of climates of intimidation are not common. Indeed, researchers have found that such students “would benefit if colleges and universities attempted to deconstruct climates of intimidation [4]” and it has also been shown that teaching underrepresented minority students empowerment skills can improve academic success [5]. Self-advocacy originates from the American Counseling Association (ACA) and the Learning Disabilities (LD) communities for effective counseling that promotes academic success and is based on a social justice framework [6]. The underlying principle of self-advocacy is that supporting skills and knowledge development in the three areas of self-advocacy leads to a student’s long term participation and ultimately academic success in areas such as post-secondary education and STEM. The pillars of the self-advocacy program are centered on (i) Empowerment, (ii) Promoting self-awareness and (iii) Social Justice and programming in the GRaduate Education for Academically Talented Students (GREATS) is aligned and repeated along these three pillars. The current professional development program is in its third year of implementation and to date twenty-seven students have participated in the program. This work in progress paper outlines the evaluation of a self-advocacy program for historically marginalized graduate students in STEM at the University of Illinois Chicago is a minority serving institution as both an Hispanic Serving Institution (HSI) and an Asian American Native American Pacific Islander Serving Institution (AANAPISI). [1] S. Stansfeld and B. Candy, "Psychosocial work environment and mental health--a meta-analytic review," ed, 2006. [2] E. M. Smith, "Ethnic minorities: Life stress, social support, and mental health issues," The Counseling Psychologist, vol. 13, no. 4, pp. 537-579, 1985. [3] D. M. Frost, K. Lehavot, and I. H. Meyer, "Minority stress and physical health among sexual minority individuals," Journal of behavioral medicine, vol. 38, no. 1, pp. 1-8, 2015. [4] R. T. Palmer, D. C. Maramba, and T. E. Dancy, "A Qualitative Investigation of Factors Promoting the Retention and Persistence of Students of Color in STEM," The Journal of Negro Education, vol. 80, no. 4, pp. 491-504, 2011. [Online]. Available: http://www.jstor.org/stable/41341155. [5] A. R. Dowden, "Implementing Self-Advocacy Training Within a Brief Psychoeducational Group to Improve the Academic Motivation of Black Adolescents," The Journal for Specialists in Group Work, vol. 34, no. 2, pp. 118-136, 2009/04/28 2009, doi: 10.1080/01933920902791937. 
    more » « less
  5. 1. Description of the objectives and motivation for the contribution to ECE education The demand for wireless data transmission capacity is increasing rapidly and this growth is expected to continue due to ongoing prevalence of cellular phones and new and emerging bandwidth-intensive applications that encompass high-definition video, unmanned aerial systems (UAS), intelligent transportation systems (ITS) including autonomous vehicles, and others. Meanwhile, vital military and public safety applications also depend on access to the radio frequency spectrum. To meet these demands, the US federal government is beginning to move from the proven but inefficient model of exclusive frequency assignments to a more-efficient, shared-spectrum approach in some bands of the radio frequency spectrum. A STEM workforce that understands the radio frequency spectrum and applications that use the spectrum is needed to further increase spectrum efficiency and cost-effectiveness of wireless systems over the next several decades to meet anticipated and unanticipated increases in wireless data capacity. 2. Relevant background including literature search examples if appropriate CISCO Systems’ annual survey indicates continued strong growth in demand for wireless data capacity. Meanwhile, undergraduate electrical and computer engineering courses in communication systems, electromagnetics, and networks tend to emphasize mathematical and theoretical fundamentals and higher-layer protocols, with less focus on fundamental concepts that are more specific to radio frequency wireless systems, including the physical and media access control layers of wireless communication systems and networks. An efficient way is needed to introduce basic RF system and spectrum concepts to undergraduate engineering students in courses such as those mentioned above who are unable to, or had not planned to take a full course in radio frequency / microwave engineering or wireless systems and networks. We have developed a series of interactive online modules that introduce concepts fundamental to wireless communications, the radio frequency spectrum, and spectrum sharing, and seek to present these concepts in context. The modules include interactive, JavaScript-based simulation exercises intended to reinforce the concepts that are presented in the modules through narrated slide presentations, text, and external links. Additional modules in development will introduce advanced undergraduate and graduate students and STEM professionals to configuration and programming of adaptive frequency-agile radios and spectrum management systems that can operate efficiently in congested radio frequency environments. Simulation exercises developed for the advanced modules allow both manual and automatic control of simulated radio links in timed, game-like simulations, and some exercises will enable students to select from among multiple pre-coded controller strategies and optionally edit the code before running the timed simulation. Additionally, we have developed infrastructure for running remote laboratory experiments that can also be embedded within the online modules, including a web-based user interface, an experiment management framework, and software defined radio (SDR) application software that runs in a wireless testbed initially developed for research. Although these experiments rely on limited hardware resources and introduce additional logistical considerations, they provide additional realism that may further challenge and motivate students. 3. Description of any assessment methods used to evaluate the effectiveness of the contribution, Each set of modules is preceded and followed by a survey. Each individual module is preceded by a quiz and followed by another quiz, with pre- and post-quiz questions drawn from the same pool. The pre-surveys allow students to opt in or out of having their survey and quiz results used anonymously in research. 4. Statement of results. The initial modules have been and are being used by three groups of students: (1) students in an undergraduate Introduction to Communication Systems course; (2) an interdisciplinary group of engineering students, including computer science students, who are participating in related undergraduate research project; and (3) students in a graduate-level communications course that includes both electrical and computer engineers. Analysis of results from the first group of students showed statistically significant increases from pre-quiz to post-quiz for each of four modules on fundamental wireless communication concepts. Results for the other students have not yet been analyzed, but also appear to show substantial pre-quiz to post-quiz increases in mean scores. 
    more » « less