skip to main content


Title: Adaptive Verifiable Coded Computing: Towards Fast, Secure and Private Distributed Machine Learning
Stragglers, Byzantine workers, and data privacy are the main bottlenecks in distributed cloud computing. Some prior works proposed coded computing strategies to jointly address all three challenges. They require either a large number of workers, a significant communication cost or a significant computational complexity to tolerate Byzantine workers. Much of the overhead in prior schemes comes from the fact that they tightly couple coding for all three problems into a single framework. In this paper, we propose Adaptive Verifiable Coded Computing (AVCC) framework that decouples the Byzantine node detection challenge from the straggler tolerance. AVCC leverages coded computing just for handling stragglers and privacy, and then uses an orthogonal approach that leverages verifiable computing to mitigate Byzantine workers. Furthermore, AVCC dynamically adapts its coding scheme to trade-off straggler tolerance with Byzantine protection. We evaluate AVCC on a compute-intensive distributed logistic regression application. Our experiments show that AVCC achieves up to 4.2× speedup and up to 5.1% accuracy improvement over the state-of-the-art Lagrange coded computing approach (LCC). AVCC also speeds up the conventional uncoded implementation of distributed logistic regression by up to 7.6×, and improves the test accuracy by up to 12.1%.  more » « less
Award ID(s):
2002874
PAR ID:
10426382
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)
Page Range / eLocation ID:
628 to 638
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider a scenario involving computations over a massive dataset stored distributedly across multiple workers, which is at the core of distributed learning algorithms. We propose Lagrange Coded Computing (LCC), a new framework to simultaneously provide (1) resiliency against stragglers that may prolong computations; (2) security against Byzantine (or malicious) workers that deliberately modify the computation for their benefit; and (3) (information-theoretic) privacy of the dataset amidst possible collusion of workers. LCC, which leverages the well-known Lagrange polynomial to create computation redundancy in a novel coded form across workers, can be applied to any computation scenario in which the function of interest is an arbitrary multivariate polynomial of the input dataset, hence covering many computations of interest in machine learning. LCC significantly generalizes prior works to go beyond linear computations. It also enables secure and private computing in distributed settings, improving the computation and communication efficiency of the state-of-the-art. Furthermore, we prove the optimality of LCC by showing that it achieves the optimal tradeoff between resiliency, security, and privacy, i.e., in terms of tolerating the maximum number of stragglers and adversaries, and providing data privacy against the maximum number of colluding workers. Finally, we show via experiments on Amazon EC2 that LCC speeds up the conventional uncoded implementation of distributed least-squares linear regression by up to 13.43×, and also achieves a 2.36×-12.65× speedup over the state-of-the-art straggler mitigation strategies. 
    more » « less
  2. Our extensive real measurements over Amazon EC2 show that the virtual instances often have different computing speeds even if they share the same configurations. This motivates us to study heterogeneous Coded Storage Elastic Computing (CSEC) systems where machines, with different computing speeds, join and leave the network arbitrarily over different computing steps. In CSEC systems, a Maximum Distance Separable (MDS) code is used for coded storage such that the file placement does not have to be re-defined with each elastic event. Computation assignment algorithms are used to minimize the computation time given computation speeds of different machines. While previous studies of heterogeneous CSEC do not include stragglers - the slow machines during the computation, we develop a new framework in heterogeneous CSEC that introduces straggler tolerance. Based on this framework, we design a novel algorithm using our previously proposed approach for heterogeneous CSEC such that the system can handle any subset of stragglers of a specified size while minimizing the computation time. Furthermore, we establish a trade-off in computation time and straggler tolerance. Another major limitation of existing CSEC designs is the lack of practical evaluations using real applications. In this paper, we evaluate the performance of our designs on Amazon EC2 for applications of the power iteration and linear regression. Evaluation results show that the proposed heterogeneous CSEC algorithms outperform the state-of-the-art designs by more than 30%. 
    more » « less
  3. Due to the surge of cloud-assisted AI services, the problem of designing resilient prediction serving systems that can effectively cope with stragglers and minimize response delays has attracted much interest. The common approach for tackling this problem is replication which assigns the same prediction task to multiple workers. This approach, however, is inefficient and incurs significant resource overheads. Hence, a learning-based approach known as parity model (ParM) has been recently proposed which learns models that can generate ``parities’’ for a group of predictions to reconstruct the predictions of the slow/failed workers. While this learning-based approach is more resource-efficient than replication, it is tailored to the specific model hosted by the cloud and is particularly suitable for a small number of queries (typically less than four) and tolerating very few stragglers (mostly one). Moreover, ParM does not handle Byzantine adversarial workers. We propose a different approach, named Approximate Coded Inference (ApproxIFER), that does not require training any parity models, hence it is agnostic to the model hosted by the cloud and can be readily applied to different data domains and model architectures. Compared with earlier works, ApproxIFER can handle a general number of stragglers and scales significantly better with the number of queries. Furthermore, ApproxIFER is robust against Byzantine workers. Our extensive experiments on a large number of datasets and model architectures show significant degraded mode accuracy improvement by up to 58% over ParM. 
    more » « less
  4. In this paper, we propose a distributed coding scheme that allows for lower computation cost per computing node than the standard Lagrange Coded Computing scheme. The proposed coding scheme is useful for cases where the elements of the input data set are of large dimensions and the computing nodes have limited computation power. This coding scheme provides a trade-off between the computation cost per worker and the recovery threshold in a distributed coded computing framework. The proposed scheme is also extended to provide data privacy against at most t colluding worker nodes in the system. 
    more » « less
  5. null (Ed.)
    Dealing with the shear size and complexity of today’s massive data sets requires computational platforms that can analyze data in a parallelized and distributed fashion. A major bottleneck that arises in such modern distributed computing environments is that some of the worker nodes may run slow. These nodes a.k.a. stragglers can significantly slow down computation as the slowest node may dictate the overall computational time. A recent computational framework, called encoded optimization, creates redundancy in the data to mitigate the effect of stragglers. In this paper we develop novel mathematical understanding for this framework demonstrating its effectiveness in much broader settings than was previously understood. We also analyze the convergence behavior of iterative encoded optimization algorithms, allowing us to characterize fundamental trade-offs between convergence rate, size of data set, accuracy, computational load (or data redundancy), and straggler toleration in this framework. 
    more » « less