skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Predicting mechanical properties of material extrusion additive manufacturing-fabricated structures with limited information
Abstract Mechanical properties of additively manufactured structures fabricated using material extrusion additive manufacturing are predicted through combining thermal modeling with entanglement theory and molecular dynamics approaches. A one-dimensional model of heat transfer in a single road width wall is created and validated against both thermography and mechanical testing results. Various model modifications are investigated to determine which heat transfer considerations are important to predicting properties. This approach was able to predict tear energies on reasonable scales with minimal information about the polymer. Such an approach is likely to be applicable to a wide range of amorphous and low crystallinity thermoplastics.  more » « less
Award ID(s):
1914651
PAR ID:
10426391
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Scientific Reports
Volume:
12
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lattice materials provide unusual thermal and vibrational properties but not within the same structure. Thermal and vibrational multifunctionality is, however, crucial for thermomechanical applications such as automotive, aerospace, building, transportation, and energy infrastructure. In applications involving mobility, both high heat transfer and low mass are desired. Although there have been various efforts to design multifunctional lattice materials, the focus has largely remained on quasi‐static mechanical and thermal properties or mechanical and vibrational properties. Herein, designs of realizable lattice materials are reported, which are inherently thermally resistive, with vastly improved thermal conductance and omnidirectional phononic band gaps. By redesigning the truss structures to serve as interconnected heat pipes, a three‐order‐of‐magnitude improvement in the specific thermal conductance is found. Nodal masses at truss junctions are further used to obtain full vibrational band gaps. It is shown that it is possible to independently tune vibrational and thermal properties within the same structure. This work provides background for the design and fabrication of multifunctional lattice materials that simultaneously prevent structural vibrations and enhance heat conduction. 
    more » « less
  2. This study explores the Faraday instability as a mechanism to enhance heat transfer in two-phase systems by exciting interfacial waves through resonance. The approach is particularly applicable to reduced-gravity environments where buoyancy-driven convection is ineffective. A reduced-order model, based on a weighted residual integral boundary layer method, is used to predict interfacial dynamics and heat flux under vertical oscillations with a stabilising thermal gradient. The model employs long-wave and one-way coupling approximations to simplify the governing equations. Linear stability theory informs the oscillation parameters for subsequent nonlinear simulations, which are then qualitatively compared against experiments conducted under Earth’s gravity. Experimental results show up to a 4.5-fold enhancement in heat transfer over pure conduction. Key findings include: (i) reduced gravity lowers interfacial stability, promoting mixing and heat transfer; and (ii) oscillation-induced instability significantly improves heat transport under Earth’s gravity. Theoretical predictions qualitatively validate experimental trends in wavelength-dependent enhancement of heat transfer. Quantitative discrepancies between model and experiment are rationalised by model assumptions, such as neglecting higher-order inertial terms, idealised boundary conditions, and simplified interface dynamics. These limitations lead to underprediction of interface deflection and heat flux. Nevertheless, the study underscores the value of Faraday instability as a means to boost heat transfer in reduced gravity, with implications for thermal management in space applications. 
    more » « less
  3. Construction 3D Printing (C3DP) with sulfur concrete holds great potential for sustainable construction on Earth and beyond. However, a key challenge is optimizing the thermal C3DP process to minimize layer deformations while enhancing interlayer adhesion for improved mechanical strength. To tackle this challenge, this paper presents a physics-based model of heat transfer within a 3D-printed sulfur concrete structure. Numerical implementations of the model are proposed for 3D and 2D structures in Cartesian coordinates. Upon calibration, the model estimates the spatiotemporal distribution of the temperature within the structure based on thermal properties, printing parameters, and environmental conditions. The model is calibrated using experimental data, where the effect of printing parameters is analyzed, and is then utilized to simulate multiple terrestrial and Martian construction scenarios. It identifies a range of printing speeds and interlayer delays that optimize extrudate properties, while also enabling automated control of the thermal C3DP process for optimal performance. 
    more » « less
  4. Abstract This work presents an approach to optimally designing a composite with thermal conductivity enhancers infiltrated with phase change material based on figure of merit (FOM) for thermal management of portable electronic devices. The FOM defines the balance between effective thermal conductivity and energy storage capacity. In this study, thermal conductivity enhancers are in the form of a honeycomb structure. Thermal conductivity enhancers are often used in conjunction with phase change material to enhance the conductivity of the composite medium. Under constrained heat sink volume, the higher volume fraction of thermal conductivity enhancers improves the effective thermal conductivity of the composite, while it reduces the amount of latent heat storage simultaneously. This work arrives at the optimal design of composite for electronic cooling by maximizing the FOM to resolve the stated tradeoff. In this study, the total volume of the composite and the interfacial heat transfer area between the phase change material and thermal conductivity enhancers are constrained for all design points. A benchmarked two-dimensional direct computational fluid dynamics model was employed to investigate the thermal performance of the phase change material and thermal conductivity enhancer composite. Furthermore, assuming conduction-dominated heat transfer in the composite, a simplified effective numerical model that solves the single energy equation with the effective properties of the phase change material and thermal conductivity enhancer has been developed. The effective properties like heat capacity can be obtained by volume averaging; however, effective thermal conductivity (required to calculate FOM) is unknown. The effective thermal conductivity of the composite is obtained by minimizing the error between the transient temperature gradient of direct and simplified model by iteratively varying the effective thermal conductivity. The FOM is maximized to find the optimal volume fraction for the present design. 
    more » « less
  5. Abstract Data centers are critical to the functioning of modern society as they host digital infrastructure. However, data centers can consume significant amounts of energy, and a substantial amount of this energy goes to cooling systems. Efficient thermal management of information technology equipment is therefore essential and allows the user to obtain peak performance from a system and enables higher equipment reliability. Thermal management of data center electronics is becoming more challenging due to rising power densities at the chip level. Cooling technologies like single-phase immersion cooling allow overcoming many such challenges owing to their higher thermal mass, lower fluid pumping powers, and potential component reliability enhancements. It is known that immersion cooling deployments require extremely low coolant flow rates, and, in many cases, natural convection can also be used to sufficiently dissipate the heat from the hot server components. It, therefore, becomes difficult to ascertain whether the rate of heat transfer is being dominated by forced or natural convection. This may lead to ambiguity in choosing an optimal heat sink solution and a suitable system mechanical design due to unknown flow regimes, further leading to sub-optimal system performance. Mixed convection can be used to enhance heat transfer in immersion cooling systems. The present investigation quantifies the contribution of mixed convection using numerical methods in an immersion-cooled server. An open compute server with dual CPU sockets is modeled on Ansys Icepak with varying power loads of 115W, 160W and 200W. The chosen dielectric fluid for this single-phase immersion-cooled setup is EC-100. Steady-state Computational Fluid Dynamics (CFD) simulations are conducted for forced, natural, and mixed convection heat transfer in a thermally shadowed server configuration at varying inlet flow rates. A baseline heat sink and an optimized heat sink with an increased fin thickness and reduced fin count are utilized for performance comparison. The effect of varying Reynolds number and Richardson number on the heat transfer rate from the heat sink is discussed to assess the flow regime, stability of the flow around the submerged components which depends on the geometry, orientation, fluid properties, flow rate and direction of the flow. The dimensionless numbers’ influence on heat transfer rate from a conventional air-cooled heat sink in immersion versus an immersion-optimized heat sink is also compared. The impact of server orientation on heat transfer behavior for the immersion optimized heat sink is also studied on heat transfer behavior for the immersion optimized heat sink. 
    more » « less