skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Propagating wave merging in a precipitation reaction
Propagating precipitation waves are a remarkable form of spatiotemporal behavior that arise through the coupling of reaction, diffusion, and precipitation. We study a system with a sodium hydroxide outer electrolyte and an aluminum hydroxide inner electrolyte. In a redissolution Liesegang system, a single propagating precipitation band moves down through the gel, with precipitate formed at the band front and precipitate dissolved at the band back. Complex spatiotemporal waves occur within the propagating precipitation band, including counter-rotating spiral waves, target patterns, and annihilation of waves on collision. We have also carried out experiments in thin slices of gel, which have revealed propagating waves of a diagonal precipitation feature within the primary precipitation band. These waves display a wave merging phenomenon in which two horizontally propagating waves merge into a single wave. Computational modeling permits the development of a detailed understanding of the complex dynamical behavior.  more » « less
Award ID(s):
2102137
PAR ID:
10426425
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Chaos: An Interdisciplinary Journal of Nonlinear Science
Volume:
33
Issue:
4
ISSN:
1054-1500
Page Range / eLocation ID:
043105
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We analyze the properties of relativistic (>700 keV) electron precipitation (REP) events measured by the low-Earth-orbit (LEO) POES/MetOp constellation of spacecraft from 2012 through 2023. Leveraging the different profiles of REP observed at LEO, we associate each event with its possible driver: waves or field line curvature scattering (FLCS). While waves typically precipitate electrons in a localized radial region within the outer radiation belt, FLCS drives energy-dependent precipitation at the edge of the belt. Wave-driven REP is detected at any MLT sector and L shell, with FLCS-driven REP occurring only over the nightside–a region where field line stretching is frequent. Wave-driven REP is broader in radial extent on the dayside and accompanied by proton precipitation over 03–23 MLT, either isolated or without a clear energy-dependent pattern, possibly implying that electromagnetic ion cyclotron (EMIC) waves are the primary driver. Across midnight, both wave-driven and FLCS-driven REP occur poleward of the proton isotropic boundary. On average, waves precipitate a higher flux of >700 keV electrons than FLCS. Both contribute to energy deposition into the atmosphere, estimated of a few MW. REP is more associated with substorm activity than storms, with FLCS-driven REP and wave-driven REP at low L shells occurring most often during strong activity (SML* < −600 nT). A preliminary analysis of the Solar Wind (SW) properties before the observed REP indicates a more sustained (∼5 h) dayside reconnection for FLCS-driven REP than for wave-driven REP (∼3 h). The magnetosphere appears more compressed during wave-driven REP, while FLCS-driven REP is associated with a faster SW of lower density. These findings are useful not only to quantify the contribution of >700 keV precipitation to the atmosphere but also to shed light on the typical properties of wave-driven vs FLCS-driven precipitation which can be assimilated into physics-based and/or predictive radiation belt models. In addition, the dataset of ∼9,400 REP events is made available to the community to enable future work. 
    more » « less
  2. Abstract. A narrow-band sodium lidar provides high temporal and vertical resolution observations of sodium density, atmospheric temperature, and wind that facilitate the investigation of atmospheric waves in the mesosphere and lower thermosphere (80–105 km). In order to retrieve full vector winds, such a lidar is usually configured in a multi-direction observing mode, with laser beams pointing to the zenith and several off-zenith directions. Gravity wave events were observed by such a lidar system from 06:30 to 11:00 UT on 14 January 2002 at Maui, Hawaii (20.7° N, 156.3° W). A novel method based on cross-spectrum was proposed to derive the horizontal wave information from the phase shifts among measurements in different directions. At least two wave packets were identified using this method: one with a period of ∼ 1.6 h, a horizontal wavelength of ∼ 438 km, and propagating toward the southwest; and the other one with a ∼ 3.2 h period, a ∼ 934 km horizontal wavelength, and propagating toward the northwest. The background atmosphere states were also fully measured and all intrinsic wave properties of the wave packets were derived. Dispersion and polarization relations were used to diagnose wave propagation and dissipation. It was revealed that both wave packets propagate through multiple thin evanescent layers and are possibly partially reflected but still get a good portion of energy to penetrate higher altitudes. A sensitivity study demonstrates the capability of this method in detecting medium-scale and medium-frequency gravity waves. With continuous and high-quality measurements from similar lidar systems worldwide, this method can be utilized to detect and study the characteristics of gravity waves of specific spatiotemporal scales. 
    more » « less
  3. Abstract Prior observational uncertainties have hindered the clear understanding of the link between tropospheric Lamb waves and ionospheric disturbances. In this study, we precisely extracted ionospheric Lamb waves originating from the epicenter of the 15 January 2022 Tonga eruption, propagating upward in a conical structure. This was achieved by using line‐of‐sight observations from the BeiDou geostationary satellites, which eliminated the spatiotemporal ambiguity introduced by the relative motion of Global Positioning System satellites, enabling the clear extraction of the Lamb signal in the ionosphere. The observed L0 mode speed (∼323 m/s) and period (∼30 min) were consistent with those of the tropospheric Lamb wave. It suggested that the ionospheric Lamb wave is likely driven by the surface Lamb wave, leading to a conical wave‐front that extends in altitude. This study highlights the significant role of Lamb waves in transmitting energy from epicenters through Earth's atmosphere and plasma systems. 
    more » « less
  4. Abstract We report the clean experimental realization of cubic–quintic complex Ginzburg–Landau (CQCGL) physics in a single driven, damped system. Four numerically predicted categories of complex dynamical behavior and pattern formation are identified for bright and dark solitary waves propagating around an active magnetic thin film-based feedback ring: (1) periodic breathing; (2) complex recurrence; (3) spontaneous spatial shifting; and (4) intermittency. These nontransient, long lifetime behaviors are observed in self-generated spin wave envelopes circulating within a dispersive, nonlinear yttrium iron garnet waveguide. The waveguide is operated in a ring geometry in which the net losses are directly compensated for via linear amplification on each round trip (of the order of 100 ns). These behaviors exhibit periods ranging from tens to thousands of round trip times (of the order of μ s) and are stable for 1000s of periods (of the order of ms). We present ten observations of these dynamical behaviors which span the experimentally accessible ranges of attractive cubic nonlinearity, dispersion, and external field strength that support the self-generation of backward volume spin waves in a four-wave-mixing dominant regime. Three-wave splitting is not explicitly forbidden and is treated as an additional source of nonlinear losses. All observed behaviors are robust over wide parameter regimes, making them promising for technological applications. We present ten experimental observations which span all categories of dynamical behavior previously theoretically predicted to be observable. This represents a complete experimental verification of the CQCGL equation as a model for the study of fundamental, complex nonlinear dynamics for driven, damped waves evolving in nonlinear, dispersive systems. The reported dynamical pattern formation of self-generated dark solitary waves in attractive nonlinearity without external sources or potentials, however, is entirely novel and is presented for both the periodic breather and complex recurrence behaviors. 
    more » « less
  5. Electromagnetic ion cyclotron (EMIC) waves can scatter radiation belt electrons with energies of a few hundred keV and higher. To accurately predict this scattering and the resulting precipitation of these relativistic electrons on short time scales, we need detailed knowledge of the wave field’s spatio-temporal evolution, which cannot be obtained from single spacecraft measurements. Our study presents EMIC wave models obtained from two-dimensional (2D) finite-difference time-domain (FDTD) simulations in the Earth’s dipole magnetic field. We study cases of hydrogen band and helium band wave propagation, rising-tone emissions, packets with amplitude modulations, and ducted waves. We analyze the wave propagation properties in the time domain, enabling comparison within situobservations. We show that cold plasma density gradients can keep the wave vector quasiparallel, guide the wave energy efficiently, and have a profound effect on mode conversion and reflections. The wave normal angle of unducted waves increases rapidly with latitude, resulting in reflection on the ion hybrid frequency, which prohibits propagation to low altitudes. The modeled wave fields can serve as an input for test-particle analysis of scattering and precipitation of relativistic electrons and energetic ions. 
    more » « less