skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Identifying key socioecological factors influencing the expression of egalitarianism and inequality among foragers
Understanding how resource characteristics influence variability in social and material inequality among foraging populations is a prominent area of research. However, obtaining cross-comparative data from which to evaluate theoretically informed resource characteristic factors has proved difficult, particularly for investigating interactions of characteristics. Therefore, we develop an agent-based model to evaluate how five key characteristics of primary resources (predictability, heterogeneity, abundance, economy of scale and monopolizability) structure pay-offs and explore how they interact to favour both egalitarianism and inequality. Using iterated simulations from 243 unique combinations of resource characteristics analysed with an ensemble machine-learning approach, we find the predictability and heterogeneity of key resources have the greatest influence on selection for egalitarian and nonegalitarian outcomes. These results help explain the prevalence of egalitarianism among foraging populations, as many groups probably relied on resources that were both relatively less predictable and more homogeneously distributed. The results also help explain rare forager inequality, as comparison with ethnographic and archaeological examples suggests the instances of inequality track strongly with reliance on resources that were predictable and heterogeneously distributed. Future work quantifying comparable measures of these two variables, in particular, may be able to identify additional instances of forager inequality. This article is part of the theme issue ‘Evolutionary ecology of inequality’.  more » « less
Award ID(s):
2203767
PAR ID:
10426442
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Philosophical Transactions of the Royal Society B: Biological Sciences
Volume:
378
Issue:
1883
ISSN:
0962-8436
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Landscape changes can alter pollinator movement and foraging patterns which can in turn influence the demographic processes of plant populations. We leveraged social network models and four fixed arrays of five hummingbird feeders equipped with radio frequency identification (RFID) data loggers to study rufous hummingbird ( Selasphorus rufus ) foraging patterns in a heterogeneous landscape. Using a space-for-time approach, we asked whether forest encroachment on alpine meadows could restrict hummingbird foraging movements and impede resource discovery. We fit social network models to data on 2221 movements between feeders made by 29 hummingbirds. Movements were made primarily by females, likely due to male territoriality and early migration dates. Distance was the driving factor in determining the rate of movements among feeders. The posterior mean effects of forest landscape variables (local canopy cover and intervening forest cover) were negative, but with considerable uncertainty. Finally, we found strong reciprocity in hummingbird movements, indicative of frequent out and back movements between resources. Together, these findings suggest that reciprocal movements by female hummingbirds could help maintain bidirectional gene flow among nearby subpopulations of ornithophilous plants; however, if the distance among meadows increases with further forest encroachment, this may limit foraging among progressively isolated meadows. 
    more » « less
  2. ABSTRACT Past work has shown that group formation in foraging animals aids in resource acquisition and reduces the number of interactions with predators. However, group formation can also increase competition for resources among group members. Here, we model how the individual costs and benefits of group formation drive group size. Our model predicts that when competition for resources occurs within and between groups, forager group size will exhibit a one‐third power‐law relationship with population abundance. However, if groups form due to intragroup competition and predation, we predict either a one‐half power‐law relationship with population abundance or a constant group size depending on the coupling between predator and prey. Using empirical data on group foraging birds and ungulates, we found a scaling relationship consistent with the one‐third power‐law, suggesting that hierarchical competition drives the average group size. Our results support work highlighting the importance of density‐dependent group formation in maintaining population stability. 
    more » « less
  3. Abstract Understanding how aquatic animals select and partition resources provides relevant information about community dynamics that can be used to help manage conservation efforts. The critically endangered hawksbill sea turtle ( Eretmochelys imbricata ) spends an extended part of its juvenile development in coastal waters. A strong proclivity to remain resident in small areas, often in high density, raises questions about how juveniles partition resources including selection of habitat and spatial overlap among conspecifics. Using between 36 and 41 acoustic receivers in the 1.5 km 2 study site, this study quantified day-and-night habitat selection, as well as 2D and 3D space use of 23 juvenile hawksbills within two adjacent Caribbean foraging grounds—Brewers Bay and Hawksbill Cove, St. Thomas, US Virgin Islands—between 2015 and 2018. We found that coral reef, rock, and the artificial dolosse forming an airport runway, were the most strongly selected habitats based on resource selection indices. Individual activity spaces in 2D and 3D were both larger during the day compared to night, although the same parts of the bay were used by each individual during both periods. The 3D approach also showed deeper space use during the day. Weekly comparisons of activity space between individuals showed limited overlap (mean 95% UD overlap; day: 0.15 (2D) and 0.07 (3D), night: 0.11 (2D) and 0.03 (3D)), suggesting some degree of resource partitioning or territoriality. Results from this study provide relevant space use information for resource management of juvenile hawksbills, in which many populations are facing habitat degradation and population declines. 
    more » « less
  4. Abstract Precipitation prediction at seasonal timescales is important for planning and management of water resources as well as preparedness for hazards such as floods, droughts and wildfires. Quantifying predictability is quite challenging as a consequence of a large number of potential drivers, varying antecedent conditions, and small sample size of high‐quality observations available at seasonal timescales, that in turn, increases prediction uncertainty and the risk of model overfitting. Here, we introduce a generalized probabilistic framework to account for these issues and assess predictability under uncertainty. We focus on prediction of winter (Nov–Mar) precipitation across the contiguous United States, using sea surface temperature‐derived indices (averaged in Aug–Oct) as predictors. In our analysis we identify “predictability hotspots,” which we define as regions where precipitation is inherently more predictable. Our framework estimates the entire predictive distribution of precipitation using copulas and quantifies prediction uncertainties, while employing principal component analysis for dimensionality reduction and a cross validation technique to avoid overfitting. We also evaluate how predictability changes across different quantiles of the precipitation distribution (dry, normal, wet amounts) using a multi‐category 3 × 3 contingency table. Our results indicate that well‐defined predictability hotspots occur in the Southwest and Southeast. Moreover, extreme dry and wet conditions are shown to be relatively more predictable compared to normal conditions. Our study may help with water resources management in several subregions of the United States and can be used to assess the fidelity of earth system models in successfully representing teleconnections and predictability. 
    more » « less
  5. Abstract Explaining large‐scale ordered patterns and their effects on ecosystem functioning is a fundamental and controversial challenge in ecology. Here, we coupled empirical and theoretical approaches to explore how competition and spatial heterogeneity govern the regularity of colony dispersion in fungus‐farming termites. Individuals from different colonies fought fiercely, and inter‐nest distances were greater when nests were large and resources scarce—as expected if competition is strong, large colonies require more resources and foraging area scales with resource availability. Building these principles into a model of inter‐colony competition showed that highly ordered patterns emerged under high resource availability and low resource heterogeneity. Analysis of this dynamical model provided novel insights into the mechanisms that modulate pattern regularity and the emergent effects of these patterns on system‐wide productivity. Our results show how environmental context shapes pattern formation by social‐insect ecosystem engineers, which offers one explanation for the marked variability observed across ecosystems. 
    more » « less