Abstract Predictable internal climate variability on decadal timescales (2–10 years) is associated with large‐scale oceanic processes, however these predictable signals may be masked by the noisy climate system. One approach to overcoming this problem is investigating state‐dependent predictability—how differences in prediction skill depend on the initial state of the system. We present a machine learning approach to identify state‐dependent predictability on decadal timescales in the Community Earth System Model version 2 pre‐industrial control simulation by incorporating uncertainty estimates into a regression neural network. We leverage the network's prediction of uncertainty to examine state dependent predictability in sea surface temperatures by focusing on predictions with the lowest uncertainty outputs. In particular, we study two regions of the global ocean—the North Atlantic and North Pacific—and find that skillful initial states identified by the neural network correspond to particular phases of Atlantic multi‐decadal variability and the interdecadal Pacific oscillation.
more »
« less
Hotspots of Predictability: Identifying Regions of High Precipitation Predictability at Seasonal Timescales From Limited Time Series Observations
Abstract Precipitation prediction at seasonal timescales is important for planning and management of water resources as well as preparedness for hazards such as floods, droughts and wildfires. Quantifying predictability is quite challenging as a consequence of a large number of potential drivers, varying antecedent conditions, and small sample size of high‐quality observations available at seasonal timescales, that in turn, increases prediction uncertainty and the risk of model overfitting. Here, we introduce a generalized probabilistic framework to account for these issues and assess predictability under uncertainty. We focus on prediction of winter (Nov–Mar) precipitation across the contiguous United States, using sea surface temperature‐derived indices (averaged in Aug–Oct) as predictors. In our analysis we identify “predictability hotspots,” which we define as regions where precipitation is inherently more predictable. Our framework estimates the entire predictive distribution of precipitation using copulas and quantifies prediction uncertainties, while employing principal component analysis for dimensionality reduction and a cross validation technique to avoid overfitting. We also evaluate how predictability changes across different quantiles of the precipitation distribution (dry, normal, wet amounts) using a multi‐category 3 × 3 contingency table. Our results indicate that well‐defined predictability hotspots occur in the Southwest and Southeast. Moreover, extreme dry and wet conditions are shown to be relatively more predictable compared to normal conditions. Our study may help with water resources management in several subregions of the United States and can be used to assess the fidelity of earth system models in successfully representing teleconnections and predictability.
more »
« less
- PAR ID:
- 10444967
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Water Resources Research
- Volume:
- 58
- Issue:
- 5
- ISSN:
- 0043-1397
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Antarctic sea ice exhibits considerable regional variability that is influenced by ocean and atmospheric conditions. Previous studies have suggested that this variability may be predictable on seasonal-to-interannual time scales. Here, we use initial-value predictability experiments of the Community Earth System Model, version 2 (CESM2), paired with analysis of the CESM2 large ensemble, to further assess the inherent predictability in regional Antarctic sea ice conditions. As in previous studies, we find that Antarctic sea ice area predictability is high for several months after initialization. It is then lost when ice retreats, and predictability is regained in the following ice advance period. In our simulations, this process acts on multiyear time scales with little sensitivity to the seasonal initialization timing but has a strong regional dependence. Long-lived ocean temperature anomalies in the vicinity of the winter ice edge are the primary source of sea ice predictability. Different predictability characteristics occur across regions, depending on how these ocean temperature anomalies are advected relative to regional sea zones. Our results show that sea ice predictability can impart predictability to primary productivity in the Southern Ocean due to its impact on light availability. This has implications for the understanding and management of Southern Ocean marine ecosystems.more » « less
-
Abstract The El Niño‐Southern Oscillation (ENSO) phenomenon—the dominant source of climate variability on seasonal to multi‐year timescales—is predictable a few seasons in advance. Forecast skill at longer multi‐year timescales has been found in a few models and forecast systems, but the robustness of this predictability across models has not been firmly established owing to the cost of running dynamical model predictions at longer lead times. In this study, we use a massive collection of multi‐model hindcasts performed using model analogs to show that multi‐year ENSO predictability is robust across models and arises predominantly due to skillful prediction of multi‐year La Nina events following strong El Niño events.more » « less
-
Abstract In late September 2024, Hurricane Helene contributed to catastrophic flooding in the Southeastern United States. The impacts of the hurricane were compounded by a predecessor rain event (PRE) 1‐day earlier, inducing unusually high precipitation and soil moisture (SM). In this case study, we examined the predictability of precipitation and SM conditions associated with these events in NOAA's operation Coupled Forecast System model (CFSv2). Specifically, we investigated the predictability of Helene and the PRE as a function forecast lead time (LT). To assess the model's ability to represent both Helene and PRE, as well as the predictability of their resulting precipitation and SM, we applied tracking of both systems with different LTs from 3 to 6 days. Our results show that the predictability drops around 4‐ to 5‐day LTs, in association with biases in the timing and location of Helene and PRE, as well as underestimated precipitation associated with the PRE.more » « less
-
Abstract Climate-driven changes in precipitation amounts and their seasonal variability are expected in many continental-scale regions during the remainder of the 21st century. However, much less is known about future changes in the predictability of seasonal precipitation, an important earth system property relevant for climate adaptation. Here, on the basis of CMIP6 models that capture the present-day teleconnections between seasonal precipitation and previous-season sea surface temperature (SST), we show that climate change is expected to alter the SST-precipitation relationships and thus our ability to predict seasonal precipitation by 2100. Specifically, in the tropics, seasonal precipitation predictability from SSTs is projected to increase throughout the year, except the northern Amazonia during boreal winter. Concurrently, in the extra-tropics predictability is likely to increase in central Asia during boreal spring and winter. The altered predictability, together with enhanced interannual variability of seasonal precipitation, poses new opportunities and challenges for regional water management.more » « less
An official website of the United States government
