Man-at-the-end (MATE) attacks against software programs are difficult to protect. Adversaries have complete access to the binary program and can run it under both static and dynamic analysis to find and break any software protection mechanisms put in place. Even though full-proof protection is not possible practically or theoretically, the goal of software protection should be to make it more difficult for an adversary to find program secrets by increasing either their monetary cost or time. Protection mechanisms must be easy to integrate into the software development lifecycle, or else they are of little to no use. In this paper, we evaluate the practical security of a watermarking technique known as Weaver, which is intended to support software watermarking based on a new transformation technique called executable steganography. Weaver allows hiding of identification marks directly into a program binary in a way that makes it difficult for an adversary to find and remove. We performed instruction frequency analysis on 106 programs from the GNU coreutils package to understand and define Weaver’s limitations and strengths as a watermarking technique. Our evaluation revealed that the initial prototype version of Weaver suffers from limitations in terms of standard benchmarks for steganography evaluation, such as its stealth. We found that this initial prototype of Weaver relied heavily on one type of instruction that does not frequently occur in standard programs, namely the mov instruction with an 8-byte immediate operand. Our instruction frequency analysis revealed a negative impact due to Weaver’s over-reliance on this mov instruction.
more »
« less
This content will become publicly available on May 22, 2024
Practical Program Modularization with Type-Based Dependence Analysis
Today’s software programs are bloating and have become extremely complex. As there is typically no internal isolation among modules in a program, a vulnerability can be exploited to corrupt the memory and take control of the whole program. Program modularization is thus a promising security mechanism that splits a complex program into smaller modules, so that memory-access instructions can be constrained from corrupting irrelevant modules. A general approach to realizing program modularization is dependence analysis which determines if an instruction is independent of specific code or data; and if so, it can be modularized. Unfortunately, dependence analysis in complex programs is generally considered infeasible, due to problems in data-flow analysis, such as unknown indirect-call targets, pointer aliasing, and path explosion. As a result, we have not seen practical automated program modularization built on dependence analysis. This paper presents a breakthrough---Type-based dependence analysis for Program Modularization (TyPM). Its goal is to determine which modules in a program can never pass a type of object (including references) to a memory-access instruction; therefore, objects of this type that are created by these modules can never be valid targets of the instruction. The idea is to employ a type-based analysis to first determine which types of data flows can take place between two modules, and then transitively resolve all dependent modules of a memory-access instruction, with respect to the specific type. Such an approach avoids the data-flow analysis and can be practical. We develop two important security applications based on TyPM: refining indirect-call targets and protecting critical data structures. We extensively evaluate TyPM with various system software, including an OS kernel, a hypervisor, UEFI firmware, and a browser. Results show that on average TyPM additionally refines indirect-call targets produced by the state of the art by 31%-91%. TyPM can also remove 99.9% of modules for memory-write instructions to prevent them from corrupting critical data structures in the Linux kernel.
more »
« less
- NSF-PAR ID:
- 10426461
- Date Published:
- Journal Name:
- 2023 IEEE Symposium on Security and Privacy (SP)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Man-at-the-end (MATE) attacks against software programs are difficult to protect. Adversaries have complete access to the binary program and can run it under both static and dynamic analysis to find and break any software protection mechanisms put in place. Even though full-proof protection is not possible practically or theoretically, the goal of software protection should be to make it more difficult for an adversary to find program secrets by increasing either their monetary cost or time. Protection mechanisms must be easy to integrate into the software development lifecycle, or else they are of little to no use. In this paper, we evaluate the practical security of a watermarking technique known as Weaver, which is intended to support software watermarking based on a new transformation technique called executable steganography. Weaver allows hiding of identification marks directly into a program binary in a way that makes it difficult for an adversary to find and remove. We performed instruction frequency analysis on 106 programs from the GNU coreutils package to understand and define Weaver’s limitations and strengths as a watermarking technique. Our evaluation revealed that the initial prototype version of Weaver suffers from limitations in terms of standard benchmarks for steganography evaluation, such as its stealth. We found that this initial prototype of Weaver relied heavily on one type of instruction that does not frequently occur in standard programs, namely the mov instruction with an 8-byte immediate operand. Our instruction frequency analysis revealed a negative impact due to Weaver’s over-reliance on this mov instruction.more » « less
-
null (Ed.)The recent Spectre attack first showed how to inject incorrect branch targets into a victim domain by poisoning microarchitectural branch prediction history. In this paper, we generalize injection-based methodologies to the memory hierarchy by directly injecting incorrect, attacker-controlled values into a victim's transient execution. We propose Load Value Injection (LVI) as an innovative technique to reversely exploit Meltdown-type microarchitectural data leakage. LVI abuses that faulting or assisted loads, executed by a legitimate victim program, may transiently use dummy values or poisoned data from various microarchitectural buffers, before eventually being re-issued by the processor. We show how LVI gadgets allow to expose victim secrets and hijack transient control flow. We practically demonstrate LVI in several proof-of-concept attacks against Intel SGX enclaves, and we discuss implications for traditional user process and kernel isolation. State-of-the-art Meltdown and Spectre defenses, including widespread silicon-level and microcode mitigations, are orthogonal to our novel LVI techniques. LVI drastically widens the spectrum of incorrect transient paths. Fully mitigating our attacks requires serializing the processor pipeline with lfence instructions after possibly every memory load. Additionally and even worse, due to implicit loads, certain instructions have to be blacklisted, including the ubiquitous x86 ret instruction. Intel plans compiler and assembler-based full mitigations that will allow at least SGX enclave programs to remain secure on LVI-vulnerable systems. Depending on the application and optimization strategy, we observe extensive overheads of factor 2 to 19 for prototype implementations of the full mitigation.more » « less
-
Obeid, Iyad Selesnick (Ed.)Electroencephalography (EEG) is a popular clinical monitoring tool used for diagnosing brain-related disorders such as epilepsy [1]. As monitoring EEGs in a critical-care setting is an expensive and tedious task, there is a great interest in developing real-time EEG monitoring tools to improve patient care quality and efficiency [2]. However, clinicians require automatic seizure detection tools that provide decisions with at least 75% sensitivity and less than 1 false alarm (FA) per 24 hours [3]. Some commercial tools recently claim to reach such performance levels, including the Olympic Brainz Monitor [4] and Persyst 14 [5]. In this abstract, we describe our efforts to transform a high-performance offline seizure detection system [3] into a low latency real-time or online seizure detection system. An overview of the system is shown in Figure 1. The main difference between an online versus offline system is that an online system should always be causal and has minimum latency which is often defined by domain experts. The offline system, shown in Figure 2, uses two phases of deep learning models with postprocessing [3]. The channel-based long short term memory (LSTM) model (Phase 1 or P1) processes linear frequency cepstral coefficients (LFCC) [6] features from each EEG channel separately. We use the hypotheses generated by the P1 model and create additional features that carry information about the detected events and their confidence. The P2 model uses these additional features and the LFCC features to learn the temporal and spatial aspects of the EEG signals using a hybrid convolutional neural network (CNN) and LSTM model. Finally, Phase 3 aggregates the results from both P1 and P2 before applying a final postprocessing step. The online system implements Phase 1 by taking advantage of the Linux piping mechanism, multithreading techniques, and multi-core processors. To convert Phase 1 into an online system, we divide the system into five major modules: signal preprocessor, feature extractor, event decoder, postprocessor, and visualizer. The system reads 0.1-second frames from each EEG channel and sends them to the feature extractor and the visualizer. The feature extractor generates LFCC features in real time from the streaming EEG signal. Next, the system computes seizure and background probabilities using a channel-based LSTM model and applies a postprocessor to aggregate the detected events across channels. The system then displays the EEG signal and the decisions simultaneously using a visualization module. The online system uses C++, Python, TensorFlow, and PyQtGraph in its implementation. The online system accepts streamed EEG data sampled at 250 Hz as input. The system begins processing the EEG signal by applying a TCP montage [8]. Depending on the type of the montage, the EEG signal can have either 22 or 20 channels. To enable the online operation, we send 0.1-second (25 samples) length frames from each channel of the streamed EEG signal to the feature extractor and the visualizer. Feature extraction is performed sequentially on each channel. The signal preprocessor writes the sample frames into two streams to facilitate these modules. In the first stream, the feature extractor receives the signals using stdin. In parallel, as a second stream, the visualizer shares a user-defined file with the signal preprocessor. This user-defined file holds raw signal information as a buffer for the visualizer. The signal preprocessor writes into the file while the visualizer reads from it. Reading and writing into the same file poses a challenge. The visualizer can start reading while the signal preprocessor is writing into it. To resolve this issue, we utilize a file locking mechanism in the signal preprocessor and visualizer. Each of the processes temporarily locks the file, performs its operation, releases the lock, and tries to obtain the lock after a waiting period. The file locking mechanism ensures that only one process can access the file by prohibiting other processes from reading or writing while one process is modifying the file [9]. The feature extractor uses circular buffers to save 0.3 seconds or 75 samples from each channel for extracting 0.2-second or 50-sample long center-aligned windows. The module generates 8 absolute LFCC features where the zeroth cepstral coefficient is replaced by a temporal domain energy term. For extracting the rest of the features, three pipelines are used. The differential energy feature is calculated in a 0.9-second absolute feature window with a frame size of 0.1 seconds. The difference between the maximum and minimum temporal energy terms is calculated in this range. Then, the first derivative or the delta features are calculated using another 0.9-second window. Finally, the second derivative or delta-delta features are calculated using a 0.3-second window [6]. The differential energy for the delta-delta features is not included. In total, we extract 26 features from the raw sample windows which add 1.1 seconds of delay to the system. We used the Temple University Hospital Seizure Database (TUSZ) v1.2.1 for developing the online system [10]. The statistics for this dataset are shown in Table 1. A channel-based LSTM model was trained using the features derived from the train set using the online feature extractor module. A window-based normalization technique was applied to those features. In the offline model, we scale features by normalizing using the maximum absolute value of a channel [11] before applying a sliding window approach. Since the online system has access to a limited amount of data, we normalize based on the observed window. The model uses the feature vectors with a frame size of 1 second and a window size of 7 seconds. We evaluated the model using the offline P1 postprocessor to determine the efficacy of the delayed features and the window-based normalization technique. As shown by the results of experiments 1 and 4 in Table 2, these changes give us a comparable performance to the offline model. The online event decoder module utilizes this trained model for computing probabilities for the seizure and background classes. These posteriors are then postprocessed to remove spurious detections. The online postprocessor receives and saves 8 seconds of class posteriors in a buffer for further processing. It applies multiple heuristic filters (e.g., probability threshold) to make an overall decision by combining events across the channels. These filters evaluate the average confidence, the duration of a seizure, and the channels where the seizures were observed. The postprocessor delivers the label and confidence to the visualizer. The visualizer starts to display the signal as soon as it gets access to the signal file, as shown in Figure 1 using the “Signal File” and “Visualizer” blocks. Once the visualizer receives the label and confidence for the latest epoch from the postprocessor, it overlays the decision and color codes that epoch. The visualizer uses red for seizure with the label SEIZ and green for the background class with the label BCKG. Once the streaming finishes, the system saves three files: a signal file in which the sample frames are saved in the order they were streamed, a time segmented event (TSE) file with the overall decisions and confidences, and a hypotheses (HYP) file that saves the label and confidence for each epoch. The user can plot the signal and decisions using the signal and HYP files with only the visualizer by enabling appropriate options. For comparing the performance of different stages of development, we used the test set of TUSZ v1.2.1 database. It contains 1015 EEG records of varying duration. The any-overlap performance [12] of the overall system shown in Figure 2 is 40.29% sensitivity with 5.77 FAs per 24 hours. For comparison, the previous state-of-the-art model developed on this database performed at 30.71% sensitivity with 6.77 FAs per 24 hours [3]. The individual performances of the deep learning phases are as follows: Phase 1’s (P1) performance is 39.46% sensitivity and 11.62 FAs per 24 hours, and Phase 2 detects seizures with 41.16% sensitivity and 11.69 FAs per 24 hours. We trained an LSTM model with the delayed features and the window-based normalization technique for developing the online system. Using the offline decoder and postprocessor, the model performed at 36.23% sensitivity with 9.52 FAs per 24 hours. The trained model was then evaluated with the online modules. The current performance of the overall online system is 45.80% sensitivity with 28.14 FAs per 24 hours. Table 2 summarizes the performances of these systems. The performance of the online system deviates from the offline P1 model because the online postprocessor fails to combine the events as the seizure probability fluctuates during an event. The modules in the online system add a total of 11.1 seconds of delay for processing each second of the data, as shown in Figure 3. In practice, we also count the time for loading the model and starting the visualizer block. When we consider these facts, the system consumes 15 seconds to display the first hypothesis. The system detects seizure onsets with an average latency of 15 seconds. Implementing an automatic seizure detection model in real time is not trivial. We used a variety of techniques such as the file locking mechanism, multithreading, circular buffers, real-time event decoding, and signal-decision plotting to realize the system. A video demonstrating the system is available at: https://www.isip.piconepress.com/projects/nsf_pfi_tt/resources/videos/realtime_eeg_analysis/v2.5.1/video_2.5.1.mp4. The final conference submission will include a more detailed analysis of the online performance of each module. ACKNOWLEDGMENTS Research reported in this publication was most recently supported by the National Science Foundation Partnership for Innovation award number IIP-1827565 and the Pennsylvania Commonwealth Universal Research Enhancement Program (PA CURE). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the official views of any of these organizations. REFERENCES [1] A. Craik, Y. He, and J. L. Contreras-Vidal, “Deep learning for electroencephalogram (EEG) classification tasks: a review,” J. Neural Eng., vol. 16, no. 3, p. 031001, 2019. https://doi.org/10.1088/1741-2552/ab0ab5. [2] A. C. Bridi, T. Q. Louro, and R. C. L. Da Silva, “Clinical Alarms in intensive care: implications of alarm fatigue for the safety of patients,” Rev. Lat. Am. Enfermagem, vol. 22, no. 6, p. 1034, 2014. https://doi.org/10.1590/0104-1169.3488.2513. [3] M. Golmohammadi, V. Shah, I. Obeid, and J. Picone, “Deep Learning Approaches for Automatic Seizure Detection from Scalp Electroencephalograms,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York, New York, USA: Springer, 2020, pp. 233–274. https://doi.org/10.1007/978-3-030-36844-9_8. [4] “CFM Olympic Brainz Monitor.” [Online]. Available: https://newborncare.natus.com/products-services/newborn-care-products/newborn-brain-injury/cfm-olympic-brainz-monitor. [Accessed: 17-Jul-2020]. [5] M. L. Scheuer, S. B. Wilson, A. Antony, G. Ghearing, A. Urban, and A. I. Bagic, “Seizure Detection: Interreader Agreement and Detection Algorithm Assessments Using a Large Dataset,” J. Clin. Neurophysiol., 2020. https://doi.org/10.1097/WNP.0000000000000709. [6] A. Harati, M. Golmohammadi, S. Lopez, I. Obeid, and J. Picone, “Improved EEG Event Classification Using Differential Energy,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium, 2015, pp. 1–4. https://doi.org/10.1109/SPMB.2015.7405421. [7] V. Shah, C. Campbell, I. Obeid, and J. Picone, “Improved Spatio-Temporal Modeling in Automated Seizure Detection using Channel-Dependent Posteriors,” Neurocomputing, 2021. [8] W. Tatum, A. Husain, S. Benbadis, and P. Kaplan, Handbook of EEG Interpretation. New York City, New York, USA: Demos Medical Publishing, 2007. [9] D. P. Bovet and C. Marco, Understanding the Linux Kernel, 3rd ed. O’Reilly Media, Inc., 2005. https://www.oreilly.com/library/view/understanding-the-linux/0596005652/. [10] V. Shah et al., “The Temple University Hospital Seizure Detection Corpus,” Front. Neuroinform., vol. 12, pp. 1–6, 2018. https://doi.org/10.3389/fninf.2018.00083. [11] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011. https://dl.acm.org/doi/10.5555/1953048.2078195. [12] J. Gotman, D. Flanagan, J. Zhang, and B. Rosenblatt, “Automatic seizure detection in the newborn: Methods and initial evaluation,” Electroencephalogr. Clin. Neurophysiol., vol. 103, no. 3, pp. 356–362, 1997. https://doi.org/10.1016/S0013-4694(97)00003-9.more » « less
-
Memory safety invariants extracted from a program can help defend and detect against both software and hardware memory violations. For instance, by allowing only specific instructions to access certain memory locations, system can detect out-of-bound or illegal pointer dereferences that lead to correctness and security issues. In this paper, we propose CPU abstractions, called, to specify and check program invariants to provide defense mechanism against both software and hardware memory violations at runtime. ensures that the invariants must be satisfied at every memory accesses. We present a fast invariant address translation and retrieval scheme using a specialized cache. It stores and checks invariants related to global, stack and heap objects. The invariant checks can be performed synchronously or asynchronously. uses synchronous checking for high security-critical programs, while others are protected by asynchronous checking. A fast exception is proposed to alert any violations as soon as possible in order to close the gap for transient attacks. Our evaluation shows that can detect both software and hardware, spatial and temporal memory violations. incurs 53% overhead when checking synchronously, or 15% overhead when checking asynchronously.more » « less