skip to main content


Title: Defining the Role of Cr 3+ as a Reductant in the Hydrothermal Synthesis of CuCrO 2 Delafossite
Award ID(s):
2018794
NSF-PAR ID:
10426485
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Inorganic Chemistry
Volume:
61
Issue:
21
ISSN:
0020-1669
Page Range / eLocation ID:
8349 to 8355
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The spectra for H5+ and D5+ are extended to cover the region between 4830 and 7300 cm−1. These spectra are obtained using mass-selected photodissociation spectroscopy. To understand the nature of the states that are accessed by the transitions in this and prior studies, we develop a four-dimensional model Hamiltonian. This Hamiltonian is expressed in terms of the two outer H2 stretches, the displacement of the shared proton from the center of mass of these two H2 groups, and the distance between the H2 groups. This choice is motivated by the large oscillator strength associated with the shared proton stretch and the fact that the spectral regions that have been probed correspond to zero, one, and two quanta of excitation in the H2 stretches. This model is analyzed using an adiabatic separation of the H2 stretches from the other two vibrations and includes the non-adiabatic couplings between H2 stretch states with the same number of quanta of excitation in the H2 stretches. Based on the analysis of the energies and wave functions obtained from this model, we find that when there are one or more quanta of excitation in the H2 stretches the states come in pairs that reflect tunneling doublets. The states accessed by the transitions in the spectrum with the largest intensity are assigned to the members of the doublets with requisite symmetry that are localized on the lowest-energy adiabat for a given level of H2 excitation. 
    more » « less
  2. Abstract

    Three new polynuclear clusters with the formulae [Mn10O4(OH)(OMe){(py)2C(O)2}2{(py)2C(OMe)(O)}4(MeCO2)6](ClO4)2(1), Na[Mn12O2(OH)3(OMe){(py)2C(O)2}6{(py)2C(OH)(O)}2(MeCO2)2(H2O)10](ClO4)8(2) and [Mn12O4(OH)2{(py)2C(O)2}6{(py)2C(OMe)(O)}(MeCO2)3(NO3)3(H2O)(DMF)2](NO3)2(3) were prepared from the combination of di‐2‐pyridyl ketone, (py)2CO, with the aliphatic diols (1,3‐propanediol (pdH2) or 1,4‐butanediol (1,4‐bdH2)) in Mn carboxylate chemistry. The reported compounds do not include the aliphatic diols employed in this reaction scheme; however, their use is essential for the formation of13. The crystal structures of13are based on multilayer cores which, to our knowledge, are reported for the first time in Mn cluster chemistry. Direct current (dc) magnetic susceptibility studies showed the presence of dominant antiferromagnetic exchange interactions within13. Alternating current (ac) magnetic susceptibility studies revealed the presence of out‐of‐phase signals below 3.0 K for2and3indicating the slow relaxation of the magnetization vector, characteristic of single‐molecule magnets; theUeffvalue of2was found to be 23 K and the preexponential factorτ0~7.6×10−9 s.

     
    more » « less
  3. Abstract We present state-selective measurements on the N H 2 + + H + and NH + + H + + H dissociation channels following single-photon double ionization at 61.5 eV of neutral NH 3 , where the two photoelectrons and two cations are measured in coincidence using 3D momentum imaging. Three dication electronic states are identified to contribute to the N H 2 + + H + dissociation channel, where the excitation in one of the three states undergoes intersystem crossing prior to dissociation, producing a cold N H 2 + fragment. In contrast, the other two states directly dissociate, producing a ro-vibrationally excited N H 2 + fragment with roughly 1 eV of internal energy. The NH + + H + + H channel is fed by direct dissociation from three intermediate dication states, one of which is shared with the N H 2 + + H + channel. We find evidence of autoionization contributing to each of the double ionization channels. The distributions of the relative emission angle between the two photoelectrons, as well as the relative angle between the recoil axis of the molecular breakup and the polarization vector of the ionizing field, are also presented to provide insight on both the photoionization and photodissociation mechanisms for the different dication states. 
    more » « less