skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Deep learning strategies for addressing issues with small datasets in 2D materials research: Microbial Corrosion
Protective coatings based on two dimensional materials such as graphene have gained traction for diverse applications. Their impermeability, inertness, excellent bonding with metals, and amenability to functionalization renders them as promising coatings for both abiotic and microbiologically influenced corrosion (MIC). Owing to the success of graphene coatings, the whole family of 2D materials, including hexagonal boron nitride and molybdenum disulphide are being screened to obtain other promising coatings. AI-based data-driven models can accelerate virtual screening of 2D coatings with desirable physical and chemical properties. However, lack of large experimental datasets renders training of classifiers difficult and often results in over-fitting. Generate large datasets for MIC resistance of 2D coatings is both complex and laborious. Deep learning data augmentation methods can alleviate this issue by generating synthetic electrochemical data that resembles the training data classes. Here, we investigated two different deep generative models, namely variation autoencoder (VAE) and generative adversarial network (GAN) for generating synthetic data for expanding small experimental datasets. Our model experimental system included few layered graphene over copper surfaces. The synthetic data generated using GAN displayed a greater neural network system performance (83-85% accuracy) than VAE generated synthetic data (78-80% accuracy). However, VAE data performed better (90% accuracy) than GAN data (84%-85% accuracy) when using XGBoost. Finally, we show that synthetic data based on VAE and GAN models can drive machine learning models for developing MIC resistant 2D coatings.  more » « less
Award ID(s):
1849206 1920954
PAR ID:
10426490
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Microbiology
Volume:
13
ISSN:
1664-302X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Significant resources have been spent in collecting and storing large and heterogeneous radar datasets during expensive Arctic and Antarctic fieldwork. The vast majority of data available is unlabeled, and the labeling process is both time-consuming and expensive. One possible alternative to the labeling process is the use of synthetically generated data with artificial intelligence. Instead of labeling real images, we can generate synthetic data based on arbitrary labels. In this way, training data can be quickly augmented with additional images. In this research, we evaluated the performance of synthetically generated radar images based on modified cycle-consistent adversarial networks. We conducted several experiments to test the quality of the generated radar imagery. We also tested the quality of a state-of-the-art contour detection algorithm on synthetic data and different combinations of real and synthetic data. Our experiments show that synthetic radar images generated by generative adversarial network (GAN) can be used in combination with real images for data augmentation and training of deep neural networks. However, the synthetic images generated by GANs cannot be used solely for training a neural network (training on synthetic and testing on real) as they cannot simulate all of the radar characteristics such as noise or Doppler effects. To the best of our knowledge, this is the first work in creating radar sounder imagery based on generative adversarial network. 
    more » « less
  2. Deep neural networks have become increasingly popular in radar micro-Doppler classification; yet, a key challenge, which has limited potential gains, is the lack of large amounts of measured data that can facilitate the design of deeper networks with greater robustness and performance. Several approaches have been proposed in the literature to address this problem, such as unsupervised pre-training and transfer learning from optical imagery or synthetic RF data. This work investigates an alternative approach to training which involves exploitation of “datasets of opportunity” – micro-Doppler datasets collected using other RF sensors, which may be of a different frequency, bandwidth or waveform - for the purposes of training. Specifically, this work compares in detail the cross-frequency training degradation incurred for several different training approaches and deep neural network (DNN) architectures. Results show a 70% drop in classification accuracy when the RF sensors for pre-training, fine-tuning, and testing are different, and a 15% degradation when only the pre-training data is different, but the fine-tuning and test data are from the same sensor. By using generative adversarial networks (GANs), a large amount of synthetic data is generated for pre-training. Results show that cross-frequency performance degradation is reduced by 50% when kinematically-sifted GAN-synthesized signatures are used in pre-training. 
    more » « less
  3. Security monitoring is crucial for maintaining a strong IT infrastructure by protecting against emerging threats, identifying vulnerabilities, and detecting potential points of failure. It involves deploying advanced tools to continuously monitor networks, systems, and configurations. However, organizations face challenges in adapting modern techniques like Machine Learning (ML) due to privacy and security risks associated with sharing internal data. Compliance with regulations like GDPR further complicates data sharing. To promote external knowledge sharing, a secure and privacy-preserving method for organizations to share data is necessary. Privacy-preserving data generation involves creating new data that maintains privacy while preserving key characteristics and properties of the original data so that it is still useful in creating downstream models of attacks. Generative models, such as Generative Adversarial Networks (GAN), have been proposed as a solution for privacy preserving synthetic data generation. However, standard GANs are limited in their capabilities to generate realistic system data. System data have inherent constraints, e.g., the list of legitimate I.P. addresses and port numbers are limited, and protocols dictate a valid sequence of network events. Standard generative models do not account for such constraints and do not utilize domain knowledge in their generation process. Additionally, they are limited by the attribute values present in the training data. This poses a major privacy risk, as sensitive discrete attribute values are repeated by GANs. To address these limitations, we propose a novel model for Knowledge Infused Privacy Preserving Data Generation. A privacy preserving Generative Adversarial Network (GAN) is trained on system data for generating synthetic datasets that can replace original data for downstream tasks while protecting sensitive data. Knowledge from domain-specific knowledge graphs is used to guide the data generation process, check for the validity of generated values, and enrich the dataset by diversifying the values of attributes. We specifically demonstrate this model by synthesizing network data captured by the network capture tool, Wireshark. We establish that the synthetic dataset holds up to the constraints of the network-specific datasets and can replace the original dataset in downstream tasks. 
    more » « less
  4. In the field of healthcare, electronic health records (EHR) serve as crucial training data for developing machine learning models for diagnosis, treatment, and the management of healthcare resources. However, medical datasets are often imbalanced in terms of sensitive attributes such as race/ethnicity, gender, and age. Machine learning models trained on class-imbalanced EHR datasets perform significantly worse in deployment for individuals of the minority classes compared to those from majority classes, which may lead to inequitable healthcare outcomes for minority groups. To address this challenge, we propose Minority Class Rebalancing through Augmentation by Generative modeling (MCRAGE), a novel approach to augment imbalanced datasets using samples generated by a deep generative model. The MCRAGE process involves training a Conditional Denoising Diffusion Probabilistic Model (CDDPM) capable of generating high-quality synthetic EHR samples from underrepresented classes. We use this synthetic data to augment the existing imbalanced dataset, resulting in a more balanced distribution across all classes, which can be used to train less biased downstream models. We measure the performance of MCRAGE versus alternative approaches using Accuracy, F1 score and AUROC of these downstream models. We provide theoretical justification for our method in terms of recent convergence results for DDPMs. 
    more » « less
  5. Generative adversarial networks (GANs) have emerged as a powerful solution for generating synthetic data when the availability of large, labeled training datasets is limited or costly in large-scale machine learning systems. Recent advancements in GAN models have extended their applications across diverse domains, including medicine, robotics, and content synthesis. These advanced GAN models have gained recognition for their excellent accuracy by scaling the model. However, existing accelerators face scalability challenges when dealing with large-scale GAN models. As the size of GAN models increases, the demand for computation and communication resources during inference continues to grow. To address this scalability issue, this article proposes Chiplet-GAN, a chiplet-based accelerator design for GAN inference. Chiplet-GAN enables scalability by adding more chiplets to the system, thereby supporting the scaling of computation capabilities. To handle the increasing communication demand as the system and model scale, a novel interconnection network with adaptive topology and passive/active network links is developed to provide adequate communication support for Chiplet-GAN. Coupled with workload partition and allocation algorithms, Chiplet-GAN reduces execution time and energy consumption for GAN inference workloads as both model and chiplet-system scales. Evaluation results using various GAN models show the effectiveness of Chiplet-GAN. On average, compared to GANAX, SpAtten, and Simba, the Chiplet-GAN reduces execution time and energy consumption by 34% and 21%, respectively. Furthermore, as the system scales for large-scale GAN model inference, Chiplet-GAN achieves reductions in execution time of up to 63% compared to the Simba, a chiplet-based accelerator. 
    more » « less