skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Just keep swimming: Increasing resilience of STEM preservice teachers during COVID-19
A substantial achievement gap between K-12 English learners (ELs) and non-ELs in science, technology, engineering, and mathematics (STEM) content areas exists, as indicated by national assessments of student outcomes. Considering the expected steady increase in students who are ELs in the U.S., determining methods for addressing this achievement gap is of immediate concern. Research has indicated this gap may be exacerbated by lack of adequate teacher preparation, specifically in STEM fields, to effectively teach students who are culturally and linguistically diverse (CLD). Founded in previous research about effective teacher preparation, the current case study pilots and reports on a model of early STEM preservice teacher training that integrates: knowledge of language development for ELs, early experiences with CLD learners, and professional development activities that guide the implementation of STEM pedagogical methods. Five STEM preservice teachers participated in a year-long supplemental training program focused on adapting STEM instruction for ELs. Components of the supplemental program included: (a) coursework extending teacher knowledge of EL language development, (b) fieldwork providing early exposure to research-based teaching experiences with EL students, and (c) professional development guiding the creation of hands-on STEM curriculum for diverse learners. Five secondary preservice teachers experienced increases in self-efficacy, growth in STEM instructional practices, and greater motivation for teaching in high-need schools. Results will inform educational models for improving STEM-EL teaching, thereby addressing a crucial need to serve the growing national population of underserved students.  more » « less
Award ID(s):
1852890
PAR ID:
10426516
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of instructional pedagogies
Volume:
28
ISSN:
1941-3394
Page Range / eLocation ID:
1-28
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Baldwin, Amy; Danns, Donna; Howe, Chad (Ed.)
    In this presentation, we will do a longitudinal comparison of science lesson plan implementations from a group of preservice teachers’ experiences during a STEM-based summer program to their experiences during their Fall semester in their practice in regular elementary and middle schools. On the one hand, their summer experiences consisted of learning and implementing science and engineering lesson plans using culturally and linguistically sustaining pedagogies, which was an intensive and guided opportunity led by university faculty on one of the university campuses. In this experience, preservice teachers collaborated with peers for 15 days to implement and evaluate their teaching of science activities in a flexible environment. On the other hand, preservice teachers have their required practice in schools during senior year to implement lesson plans and become familiar with the regular tasks of an in-service teacher. This comparison is part of the research conducted by the Culturally Sustaining Pedagogies in Science for English Language Learners project funded by the National Science Foundation and focuses on providing the necessary pedagogical tools to teach STEM to multilingual students (in our case, from Latin American countries). We conclude with a series of recommendations for preservice teachers and in-service teachers who have multilingual and emerging bilingual learners in their classrooms. 
    more » « less
  2. The COVID-19-induced closure of schools significantly impacted the field experiences of students enrolled in teacher preparation programs. We addressed this ongoing challenge by adapting an early field experience model for secondary teachers that shifted online mid-semester. The University Teaching Experience model deploys a cohort of preservice secondary mathematics teachers to support instruction in an introductory university mathematics course. When the designated mathematics course moved online, the preservice teachers were able to continue their field experience by facilitating small-group discussions in virtual breakout rooms. To understand the perspectives of the stakeholders participating in the online field experience, we conducted semi-structured one-on-one interviews with the preservice teachers, the mathematics course instructor, and the university mathematics students involved in this setting. Early results indicated that the preservice teachers were highly valued by both the course instructor and the undergraduate mathematics students. Additionally, the preservice teachers appreciated the opportunity to continue their field experience, albeit in the more limited format. We present themes which emerged from preservice teacher interviews and share guidance for teacher preparation program faculty interested in trying an online early field experience while access to K-12 classrooms is limited. 
    more » « less
  3. Baldwin, Amy; Danns, Donna; Howe, Chad (Ed.)
    In this presentation, we will analyze and explain how three university faculty designed an intensive 12-day science methods course for preservice teachers to learn about science. The course, which is part of the Culturally Sustaining Pedagogies in Science for English Language Learners project funded by the National Science Foundation, is focused on differentiating science and engineering content for emerging bilingual students (English/Spanish). After the course, teacher educators then implement this content with 4th - 8th grade students in the STEM Summer Scholars Institute, a 15-day academic enrichment program for emerging bilingual students. Not only will we explain how this differentiation toolkit is helping preservice teachers to build more inclusive and supporting environments in science in their current practice, but we also explore how other content, such asco-teaching models and science and engineering methodologies, shaped their teaching skills. The differentiation toolkit consists of the use of technology, hands-on materials, and multimodalities, and we examine how the preservice teacher-students interactions are structured following a culturally and linguistically relevant methodology for the classroom. Project faculty and teacher educators will discuss our experiences in implementing these methodologies (science and culturally and linguistically relevant practices) including areas of growth. 
    more » « less
  4. In pre-college levels, integrated science, technology, engineering, and mathematics (STEM) are often taught by science or mathematics teachers. These teachers lack the engineering and technology background and they do not necessarily use project-based and inquiry-oriented instructional strategies. To close the gap in the qualified STEM education teacher workforce, the authors developed and piloted a novel course to train preservice STEM teachers to effectively employ project-based and inquiry-oriented teaching strategies at pre-college levels. This 3-credit research and design experience course was piloted in the Spring 2023 semester. The preservice STEM teachers, enrolled in the course, engaged in hands-on activities, engineering project-based training, inquiry-based learning techniques through research training, makerspace training, field experience, and mentorship. The course comprised two parts. In part I, the students received research training. In part II, the students engaged in engineering design and makerspace professional development. In this paper, we report on the course design elements and the impact of the course activities on students’ self-efficacy in teaching STEM subjects using emerging technology, as well as their teaching approaches and understanding of student learning. The authors conducted a mixed methods study and collected both qualitative and quantitative data. Preliminary results of the multiyear study are presented. Initial findings indicate a heightened confidence of the students in their ability to deliver STEM content in secondary classrooms. Students improved their teaching approaches and reported positive experiences with the course. 
    more » « less
  5. Early science, technology, engineering, and mathematics (STEM) education sets the stage for future STEM learning. The purpose of this synthesis is to understand the findings from investments to improve prekindergarten (preK) and elementary science teaching from projects funded by the National Science Foundation’s Discovery Research PreK-12 (DRK-12) program. In the 5 years spanning 2011–15, the DRK-12 program funded or cofunded 25 projects, totaling more than $60 million, related to improving preK and elementary science teaching. Our review identified 25 DRK-12 projects related to improving preK and elementary science teaching funded in 2011–15. We synthesized findings from 25 of those projects that produced products (e.g., peer-reviewed journal articles, conference papers) that described the project and outcomes. We synthesized the empirical findings from interventions in four common areas of investment: (a) preservice preK and elementary preparation programs, (b) in-service teacher professional development (PD), (c) instructional materials for preK and elementary teachers, and (d) strategies for diverse learners. Link to PDF: https://www.air.org/sites/default/files/2022-08/Improving-Prek-and-Elementary-Science-Teaching--DRK-12-STEM-August-2022.pdf 
    more » « less