skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hybrid Metal-Organic Frameworks/Carbon Fibers Reinforcements for Additively Manufactured Composites
Additively manufactured (AM) composites based on short carbon fibers possess strength and stiffness far less than their continuous fiber counterparts due to the fiber’s small aspect ratio and inadequate interfaces with the epoxy matrix. This investigation presents a route for preparing hybrid reinforcements for AM that comprise short carbon fibers and nickel-based metal-organic frameworks (Ni-MOFs). The porous MOFs furnish the fibers with tremendous surface area. Additionally, the MOFs growth process is non-destructive to the fibers and easily scalable. This investigation also demonstrates the viability of using Ni-based MOFs as a catalyst for growing multi-walled carbon nanotubes (MWCNTs) on carbon fibers. The changes to the fiber were examined via electron microscopy, X-ray scattering techniques, and Fourier-transform infrared spectroscopy (FTIR). The thermal stabilities were probed by thermogravimetric analysis (TGA). Tensile and dynamic mechanical analysis (DMA) tests were utilized to explore the effect of MOFs on the mechanical properties of 3D-printed composites. Composites with MOFs exhibited improvements in stiffness and strength by 30.2% and 19.0%, respectively. The MOFs enhanced the damping parameter by 700%.  more » « less
Award ID(s):
2001038 2018375
PAR ID:
10426561
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Nanomaterials
Volume:
13
Issue:
5
ISSN:
2079-4991
Page Range / eLocation ID:
944
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Pellet-based extrusion deposition of carbon fiber-reinforced composites at high material deposition rates has recently gained much attention due to its applications in large-scale additive manufacturing. The mechanical and physical properties of large-volume components largely depend on their reinforcing fiber length. However, very few studies have been done thus far to have a direct comparison of additively fabricated composites reinforced with different carbon fiber lengths. In this study, a new additive manufacturing (AM) approach to fabricate long fiber-reinforced polymer (LFRP) was first proposed. A pellet-based extrusion deposition method was implemented, which directly used thermoplastic pellets and continuous fiber tows as feedstock materials. Discontinuous long carbon fibers, with an average fiber length of 20.1 mm, were successfully incorporated into printed LFRP samples. The printed LFRP samples were compared with short fiber-reinforced polymer (SFRP) and continuous fiber-reinforced polymer (CFRP) counterparts through mechanical tests and microstructural analyses. The carbon fiber dispersion, distribution of carbon fiber length and orientation, and fiber wetting were studied. As expected, a steady increase in flexural strength was observed with increasing fiber length. The carbon fibers were highly oriented along the printing direction. A more uniformly distributed discontinuous fiber reinforcement was found within printed SFRP and LFRP samples. Due to decreased fiber impregnation time and lowered impregnation rate, the printed CFRP samples showed a lower degree of impregnation and worse fiber wetting conditions. The feasibility of the proposed AM methods was further demonstrated by fabricating large-volume components with complex geometries. 
    more » « less
  2. Composites printed using material extrusion additive manufacturing (AM) typically exhibit alignment of high- aspect-ratio reinforcements parallel to the print direction. This alignment leads to highly anisotropic stiffness, strength, and transport properties. In many cases, it would be desirable to increase mechanical and transport properties transverse to the print direction, for example, in 3D-printed heat sinks or heat exchangers where heat must be moved efficiently between printed roads or layers. Rotational direct ink writing (RDIW), where the deposition nozzle simultaneously rotates and translates during deposition, provides a method to reorient fibers transverse to the print direction during the printing process. In the present work, carbon fiber-reinforced epoxy composites were printed by RDIW with a range of nozzle rotation rates and the in-plane and through-thickness thermal conductivity was measured. In addition, the orientation of carbon fiber (CF) in the composites was measured using optical microscopy and image analysis, from which second-order fiber orientation tensors were calculated. These results showed that the orientation of CF became less anisotropic as nozzle rotation rate increased, leading to increased through-thickness thermal conductivity, which increased by 40% at the highest rotation rate. The orientation tensors also showed that RDIW was more effective at reorienting fibers within the in-plane transverse direction compared to the through-thickness transverse direction. The results presented here demonstrate that a current weakness of material extrusion AM composites—poor thermal conductivity in the through-thickness direction—can be significantly improved with RDIW. 
    more » « less
  3. Additive manufacturing (AM) of polymer composites with continuous fibers could play a major role in the future of aerospace and beyond but will require printed materials to achieve new levels of reliability. This study characterized the strength distribution of selected thermoplastic matrix composites as a func- tion of printing via fused filament fabrication (FFF). Experimental and commercial composite filaments of continuous carbon or Kevlar fibers were printed with volume fraction (Vf) ranging from approximately 28 to 56 %. The strength was evaluated under uniaxial tension after specific stages of printing and Weibull statistics were applied to characterize the strength distribution. There was a significant reduction in strength of the printed material with respect to the unprinted condition, regardless of reinforcement type, fiber volume fraction or printer used. Damage introduced by feed extrusion of the filament, and fiber failures induced at material deposition were most detrimental. For carbon fiber filaments, the reduc- tion ranged from approximately 10 % for an experimental material to over 60 % for a commercial filament. There was no correlation in the strength degradation or variability with Vf. The prevention of process-related fiber damage is key to advancing AM for continuous fiber composite and application to designs intended for stress-critical applications. 
    more » « less
  4. null (Ed.)
    Fully biodegradable unidirectional green composites with excellent tensile properties were fabricated by combining one of the highest specific strength liquid crystalline cellulose (LCC) fibers as the reinforcement and microfibrillated cellulose (MFC) strengthened nonedible avocado seed starch (AVS)-based resin. MFC/AVS resin was crosslinked using 1,2,3,4-butane tetracarboxylic acid as well as plasticized using sorbitol or glycerol. Combination of alkali, mechanical and thermal treatments improved LCC fiber fracture stress from 1.5 GPa to over 1.9 GPa and Young’s modulus from 49 to 64 GPa. While the type and amount of plasticizer used changed the fracture strain of MFC/AVS resin, they also showed significant influence on the mechanical properties of the unidirectional composites. These composites prepared by hand lay-up, based on modified LCC fibers resulted in fracture stress of over 380 MPa and Young’s modulus of 19.5 GPa with less than 40% fiber content. Results suggest that there is scope to improve the properties further by using higher fiber content and automated manufacturing. These ‘green’ composites with excellent strength and stiffness may be used in many applications such as construction, automobile and others. 
    more » « less
  5. Short carbon fiber-reinforced polymer composites are widely used in polymer extrusion additive manufacturing (AM), including large-area additive manufacturing (LAAM), due to their enhanced mechanical properties as compared to neat polymers. However, the mechanical properties of these composites depend on microstructural characteristics, including fibers and micro-voids, which are determined during processing. In this work, the correlation between fibers and micro-voids within the microstructure of LAAM polymer composites throughout various processing stages of short carbon fiber-reinforced acrylonitrile butadiene styrene (SCF/ABS) is investigated. The processing stages considered here include the incoming pellets, a single freely extruded strand, a single regularly deposited bead, and a single regularly deposited bead pressed by a mechanical roller. A high-resolution X-ray micro-computed tomography (µCT) system is employed to characterize the microstructural features in terms of the fibers (volume fraction, fiber orientation tensor) and micro-voids (volume fraction, sphericity) in the SCF/ABS samples. The results indicate that micro-voids exist within the microstructure of the SCF/ABS composite in all four stages considered here and that the micro-void volume fraction and micro-void sphericity vary among the test samples. Moreover, the results show a considerable variation in fiber orientation and fiber volume fraction within the microstructure throughout all the stages considered; however, all the samples show the highest alignment in the extrusion/print direction. Furthermore, a correlation is identified between the fiber orientation and the micro-void volume fraction within samples from all four stages considered here. This finding suggests that fibers tend to align more in the extrusion/print direction in regions with less micro-void content. 
    more » « less