skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Electrophysiological Activity of Primary Cortical Neuron-Glia Mixed Cultures
Neuroinflammation plays a central role in many neurological disorders, ranging from traumatic brain injuries to neurodegeneration. Electrophysiological activity is an essential measure of neuronal function, which is influenced by neuroinflammation. In order to study neuroinflammation and its electrophysiological fingerprints, there is a need for in vitro models that accurately capture the in vivo phenomena. In this study, we employed a new tri-culture of primary rat neurons, astrocytes, and microglia in combination with extracellular electrophysiological recording techniques using multiple electrode arrays (MEAs) to determine the effect of microglia on neural function and the response to neuroinflammatory stimuli. Specifically, we established the tri-culture and its corresponding neuron-astrocyte co-culture (lacking microglia) counterpart on custom MEAs and monitored their electrophysiological activity for 21 days to assess culture maturation and network formation. As a complementary assessment, we quantified synaptic puncta and averaged spike waveforms to determine the difference in excitatory to inhibitory neuron ratio (E/I ratio) of the neurons. The results demonstrate that the microglia in the tri-culture do not disrupt neural network formation and stability and may be a better representation of the in vivo rat cortex due to its more similar E/I ratio as compared to more traditional isolated neuron and neuron-astrocyte co-cultures. In addition, only the tri-culture displayed a significant decrease in both the number of active channels and spike frequency following pro-inflammatory lipopolysaccharide exposure, highlighting the critical role of microglia in capturing electrophysiological manifestations of a representative neuroinflammatory insult. We expect the demonstrated technology to assist in studying various brain disease mechanisms.  more » « less
Award ID(s):
2003849 1454426
PAR ID:
10426570
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Cells
Volume:
12
Issue:
5
ISSN:
2073-4409
Page Range / eLocation ID:
821
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. BackgroundMicroglia play a critical role in neurodegenerative disorders, such as Alzheimer's disease, where alterations in microglial function may result in pathogenic amyloid-β (Aβ) accumulation, chronic neuroinflammation, and deleterious effects on neuronal function. However, studying these complex factors in vivo, where numerous confounding processes exist, is challenging, and until recently, in vitro models have not allowed sustained culture of critical cell types in the same culture. ObjectiveWe employed a rat primary tri-culture (neurons, astrocytes, and microglia) model and compared it to co-culture (neurons and astrocytes) and mono-culture (microglia) to study microglial function (i.e., motility and Aβ clearance) and proteomic response to exogenous Aβ. MethodsThe cultures were exposed to fluorescently-labeled Aβ (FITC-Aβ) particles for varying durations. Epifluorescence microscopy images were analyzed to quantify the number of FITC-Aβ particles and assess cytomorphological features. Cytokine profiles from conditioned media were obtained. Live-cell imaging was employed to extract microglia motility parameters. ResultsFITC-Aβ particles were more effectively cleared in the tri-culture compared to the co-culture. This was attributed to microglia engulfing FITC-Aβ particles, as confirmed via epifluorescence and confocal microscopy. FITC-Aβ treatment significantly increased microglia size, but had no significant effect on neuronal surface coverage or astrocyte size. Upon FITC-Aβ treatment, there was a significant increase in proinflammatory cytokines in tri-culture, but not in co-culture. Aβ treatment altered microglia motility evident as a swarming-like motion. ConclusionsThe results suggest that neuron-astrocyte-microglia interactions influence microglia function and highlight the utility of the tri-culture model for studies of neuroinflammation, neurodegeneration, and cell-cell communication. 
    more » « less
  2. Abstract Objective.Characterizing the relationship between neuron spiking and the signals that electrodes record is vital to defining the neural circuits driving brain function and informing clinical brain-machine interface design. However, high electrode biocompatibility and precisely localizing neurons around the electrodes are critical to defining this relationship.Approach.Here, we demonstrate consistent localization of the recording site tips of subcellular-scale (6.8µm diameter) carbon fiber electrodes and the positions of surrounding neurons. We implanted male rats with carbon fiber electrode arrays for 6 or 12+ weeks targeting layer V motor cortex. After explanting the arrays, we immunostained the implant site and localized putative recording site tips with subcellular-cellular resolution. We then 3D segmented neuron somata within a 50µm radius from implanted tips to measure neuron positions and health and compare to healthy cortex with symmetric stereotaxic coordinates.Main results.Immunostaining of astrocyte, microglia, and neuron markers confirmed that overall tissue health was indicative of high biocompatibility near the tips. While neurons near implanted carbon fibers were stretched, their number and distribution were similar to hypothetical fibers placed in healthy contralateral brain. Such similar neuron distributions suggest that these minimally invasive electrodes demonstrate the potential to sample naturalistic neural populations. This motivated the prediction of spikes produced by nearby neurons using a simple point source model fit using recorded electrophysiology and the mean positions of the nearest neurons observed in histology. Comparing spike amplitudes suggests that the radius at which single units can be distinguished from others is near the fourth closest neuron (30.7 ± 4.6µm, X ˉ ± S) in layer V motor cortex.Significance.Collectively, these data and simulations provide the first direct evidence that neuron placement in the immediate vicinity of the recording site influences how many spike clusters can be reliably identified by spike sorting. 
    more » « less
  3. Astrocytes play a central role in inducing concerted phase synchronized neural-wave patterns inside the brain. In this article, we demonstrate that injected radio-frequency signal in underlying heavy metal layer of spin-orbit torque oscillator neurons mimic the neuron phase synchronization effect realized by glial cells. Potential application of such phase coupling effects is illustrated in the context of a temporal “binding problem.” We also present the design of a coupled neuron-synapse-astrocyte network enabled by compact neuromimetic devices by combining the concepts of local spike-timing dependent plasticity and astrocyte induced neural phase synchrony. 
    more » « less
  4. Abstract Microglia, the brain’s resident macrophages, participate in development and influence neuroinflammation, which is characteristic of multiple brain pathologies. Diverse insults cause microglia to alter their morphology from “resting” to “activated” shapes, which vary with stimulus type, brain location, and microenvironment. This morphologic diversity commonly restricts microglial analyses to specific regions and manual methods. We introduce StainAI, a deep learning tool that leverages 20x whole-slide immunohistochemistry images for rapid, high-throughput analysis of microglial morphology. StainAI maps microglia to a brain atlas, classifies their morphology, quantifies morphometric features, and computes an activation score for any region of interest. As a proof of principle, StainAI was applied to a rat model of pediatric asphyxial cardiac arrest, accurately classifying millions of microglia across multiple slices, surpassing current methods by orders of magnitude, and identifying both known and novel activation patterns. Extending its application to a non-human primate model of simian immunodeficiency virus infection further demonstrated its generalizability beyond rodent datasets, providing new insights into microglial responses across species. StainAI offers a scalable, high-throughput solution for microglial analysis from routine immunohistochemistry images, accelerating research in microglial biology and neuroinflammation. 
    more » « less
  5. Abstract Proteomic profiling of brain cell types using isolation-based strategies pose limitations in resolving cellular phenotypes representative of their native state. We describe a mouse line for cell type-specific expression of biotin ligase TurboID, for in vivo biotinylation of proteins. Using adenoviral and transgenic approaches to label neurons, we show robust protein biotinylation in neuronal soma and axons throughout the brain, allowing quantitation of over 2000 neuron-derived proteins spanning synaptic proteins, transporters, ion channels and disease-relevant druggable targets. Next, we contrast Camk2a-neuron and Aldh1l1-astrocyte proteomes and identify brain region-specific proteomic differences within both cell types, some of which might potentially underlie the selective vulnerability to neurological diseases. Leveraging the cellular specificity of proteomic labeling, we apply an antibody-based approach to uncover differences in neuron and astrocyte-derived signaling phospho-proteins and cytokines. This approach will facilitate the characterization of cell-type specific proteomes in a diverse number of tissues under both physiological and pathological states. 
    more » « less