skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2003849

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract BackgroundVagal afferent neurons represent the key neurosensory branch of the gut-brain axis, which describes the bidirectional communication between the gastrointestinal system and the brain. These neurons are important for detecting and relaying sensory information from the periphery to the central nervous system to modulate feeding behavior, metabolism, and inflammation. Confounding variables complicate the process of isolating the role of the vagal afferents in mediating these physiological processes. Therefore, we developed a microfluidic model of the sensory branch of the gut-brain axis. We show that this microfluidic model successfully compartmentalizes the cell body and neurite terminals of the neurons, thereby simulates the anatomical layout of these neurons to more accurately study physiologically-relevant processes. MethodsWe implemented a primary rat vagal afferent neuron culture into a microfluidic platform consisting of two concentric chambers interconnected with radial microchannels. The microfluidic platform separated cell bodies from neurite terminals of vagal afferent neurons. We then introduced physiologically-relevant gastrointestinal effector molecules at the nerve terminals and assessed their retrograde transport along the neurite or capacity to elicit an electrophysiological response using live cell calcium imaging. ResultsThe angle of microchannel outlets dictated the probability of neurites growing into a chamber versus tracking along chamber walls. When the neurite terminals were exposed to fluorescently-labeled cholera toxin subunit B, the proteins were taken up and retrogradely transported along the neurites over the course of 24 h. Additionally, mechanical perturbation (e.g., rinsing) of the neurite terminals significantly increased intracellular calcium concentration in the distal soma. Finally, membrane-displayed receptor for capsaicin was expressed and trafficked along newly projected neurites, as revealed by confocal microscopy. ConclusionsIn this work, we developed a microfluidic device that can recapitulate the anatomical layout of vagal afferent neurons in vitro. We demonstrated two physiologically-relevant applications of the platforms: retrograde transport and electrophysiological response. We expect this tool to enable controlled studies on the role of vagal afferent neurons in the gut-brain axis. 
    more » « less
  2. BackgroundMicroglia play a critical role in neurodegenerative disorders, such as Alzheimer's disease, where alterations in microglial function may result in pathogenic amyloid-β (Aβ) accumulation, chronic neuroinflammation, and deleterious effects on neuronal function. However, studying these complex factors in vivo, where numerous confounding processes exist, is challenging, and until recently, in vitro models have not allowed sustained culture of critical cell types in the same culture. ObjectiveWe employed a rat primary tri-culture (neurons, astrocytes, and microglia) model and compared it to co-culture (neurons and astrocytes) and mono-culture (microglia) to study microglial function (i.e., motility and Aβ clearance) and proteomic response to exogenous Aβ. MethodsThe cultures were exposed to fluorescently-labeled Aβ (FITC-Aβ) particles for varying durations. Epifluorescence microscopy images were analyzed to quantify the number of FITC-Aβ particles and assess cytomorphological features. Cytokine profiles from conditioned media were obtained. Live-cell imaging was employed to extract microglia motility parameters. ResultsFITC-Aβ particles were more effectively cleared in the tri-culture compared to the co-culture. This was attributed to microglia engulfing FITC-Aβ particles, as confirmed via epifluorescence and confocal microscopy. FITC-Aβ treatment significantly increased microglia size, but had no significant effect on neuronal surface coverage or astrocyte size. Upon FITC-Aβ treatment, there was a significant increase in proinflammatory cytokines in tri-culture, but not in co-culture. Aβ treatment altered microglia motility evident as a swarming-like motion. ConclusionsThe results suggest that neuron-astrocyte-microglia interactions influence microglia function and highlight the utility of the tri-culture model for studies of neuroinflammation, neurodegeneration, and cell-cell communication. 
    more » « less
  3. Abstract There is a need for novel teaching approaches to train biomedical engineers that are conversant across disciplines and have the technical skills to address interdisciplinary scientific and technological challenges. Here, we describe a graduate-level miniaturized biomedical device engineering course that has been taught over the last decade in in-person, remote, and hybrid formats. The course employs experiential learning components, including a proposal development and review that mimic the National Institutes of Health process and technical assignments that use raw research data to simulate a research experience. The effectiveness of the course was measured via pre-/post-course concept inventory surveys as well as course evaluations with targeted questions on the learning instruments. Statistical comparison of pre-/post-course survey scores suggests that the course was effective in students achieving the learning objectives, and comparison of relative increase in pre-/post-course survey scores across different instruction formats (i.e., in-person, remote, hybrid) showed minimal difference, suggesting that the teaching elements are readily transferrable to remote instruction. 
    more » « less
  4. Nanoporous metals produced via dealloying have attracted significant interest due to the interesting physics surrounding their morphological evolution and how their topologically complex structure influences mechanical, optical, and electrochemical properties. Their impressive nanostructure-enabled properties – such as increased catalytic activity, surface-enhanced Raman signals, high strength and large surface-to-volume ratio – have led to catalysts, sensors, actuators, energy storage, and biomedical device coatings with superior properties and performance. However, translation of nanoporous metals into practical applications has revealed needs for new material systems and manufacturing approaches, and consequently better predictive models for application-specific operating conditions. The goal of this MRS Bulletin issue is to elaborate on the latest advances in emerging methods and technologies of dealloyed materials that enable new structures and form factors, machine learning-guided design and synthesis, material recovery and sustainability for scaled-up production, and stable performance in intended operational environments. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  5. The gut–brain axis (GBA) connects the gastrointestinal tract and the central nervous system (CNS) via the peripheral nervous system and humoral (e.g., circulatory and lymphatic system) routes. The GBA comprises a sophisticated interaction between various mammalian cells, gut microbiota, and systemic factors. This interaction shapes homeostatic and pathophysiological processes and plays an important role in the etiology of many disorders including neuropsychiatric conditions. However, studying the underlying processes of GBA in vivo, where numerous confounding factors exist, is challenging. Furthermore, conventional in vitro models fall short of capturing the GBA anatomy and physiology. Microfluidic platforms with integrated sensors and actuators are uniquely positioned to enhance in vitro models by representing the anatomical layout of cells and allowing to monitor and modulate the biological processes with high spatiotemporal resolution. Here, we first briefly describe microfluidic technologies and their utility in modeling the CNS, vagus nerve, gut epithelial barrier, blood–brain barrier, and their interactions. We then discuss the challenges and opportunities for each model, including the use of induced pluripotent stem cells and incorporation of sensors and actuator modalities to enhance the capabilities of these models. We conclude by envisioning research directions that can help in making the microfluidics-based GBA models better-suited to provide mechanistic insight into pathophysiological processes and screening therapeutics. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  6. Nanoporous gold (np-Au) has found its use in applications ranging from catalysis to biosensing, where pore morphology plays a critical role in performance. While the morphology evolution of bulk np-Au has been widely studied, knowledge about its thin-film form is limited. This work hypothesizes that the mechanical compliance of the thin film substrate can play a critical role in the morphology evolution. Via experimental and finite-element-analysis approaches, we investigate the morphological variation in np-Au thin films deposited on compliant silicone (PDMS) substrates of a range of thicknesses anchored on rigid glass supports and compare those to the morphology of np-Au deposited on glass. More macroscopic (10 s to 100 s of microns) cracks and discrete islands form in the np-Au films on PDMS compared to on glass. Conversely, uniformly distributed microscopic (100 s of nanometers) cracks form in greater numbers in the np-Au films on glass than those on PDMS, with the cracks located within the discrete islands. The np-Au films on glass also show larger ligament and pore sizes, possibly due to higher residual stresses compared to the np-Au/PDMS films. The effective elastic modulus of the substrate layers decreases with increasing PDMS thickness, resulting in secondary np-Au morphology effects, including a reduction in macroscopic crack-to-crack distance, an increase in microscopic crack coverage, and a widening of the microscopic cracks. However, changes in the ligament/pore widths with PDMS thickness are negligible, allowing for independent optimization for cracking. We expect these results to inform the integration of functional np-Au films on compliant substrates into emerging applications, including flexible electronics. 
    more » « less
  7. The morphological evolution of nanoporous gold is generally believed to be governed by surface diffusion. This work specifically explores the dependence of mass transport by surface diffusion on the curvature of a gold surface. The surface diffusivity is estimated by molecular dynamics simulations for a variety of surfaces of constant mean curvature, eliminating any chemical potential gradients and allowing the possible dependence of the surface diffusivity on mean curvature to be isolated. The apparent surface diffusivity is found to have an activation energy of ~0.74 eV with a weak dependence on curvature, but is consistent with the values reported in the literature. The apparent concentration of mobile surface atoms is found to be highly variable, having an Arrhenius dependence on temperature with an activation energy that also has a weak curvature dependence. These activation energies depend on curvature in such a way that the rate of mass transport by surface diffusion is nearly independent of curvature, but with a higher activation energy of ~1.01 eV. The curvature dependencies of the apparent surface diffusivity and concentration of mobile surface atoms is believed to be related to the expected lifetime of a mobile surface atom, and has the practical consequence that a simulation study that does not account for this finite lifetime could underestimate the activation energy for mass transport via surface diffusion by ~0.27 eV. 
    more » « less
  8. The gut–brain axis embodies the bi-directional communication between the gastrointestinal tract and the central nervous system (CNS), where vagal afferent neurons (VANs) serve as sensors for a variety of gut-derived signals. The gut is colonized by a large and diverse population of microorganisms that communicate via small (effector) molecules, which also act on the VAN terminals situated in the gut viscera and consequently influence many CNS processes. However, the convoluted in vivo environment makes it difficult to study the causative impact of the effector molecules on VAN activation or desensitization. Here, we report on a VAN culture and its proof-of-principle demonstration as a cell-based sensor to monitor the influence of gastrointestinal effector molecules on neuronal behavior. We initially compared the effect of surface coatings (poly-L-lysine vs. Matrigel) and culture media composition (serum vs. growth factor supplement) on neurite growth as a surrogate of VAN regeneration following tissue harvesting, where the Matrigel coating, but not the media composition, played a significant role in the increased neurite growth. We then used both live-cell calcium imaging and extracellular electrophysiological recordings to show that the VANs responded to classical effector molecules of endogenous and exogenous origin (cholecystokinin serotonin and capsaicin) in a complex fashion. We expect this study to enable platforms for screening various effector molecules and their influence on VAN activity, assessed by their information-rich electrophysiological fingerprints. 
    more » « less
  9. Neuroinflammation plays a central role in many neurological disorders, ranging from traumatic brain injuries to neurodegeneration. Electrophysiological activity is an essential measure of neuronal function, which is influenced by neuroinflammation. In order to study neuroinflammation and its electrophysiological fingerprints, there is a need for in vitro models that accurately capture the in vivo phenomena. In this study, we employed a new tri-culture of primary rat neurons, astrocytes, and microglia in combination with extracellular electrophysiological recording techniques using multiple electrode arrays (MEAs) to determine the effect of microglia on neural function and the response to neuroinflammatory stimuli. Specifically, we established the tri-culture and its corresponding neuron-astrocyte co-culture (lacking microglia) counterpart on custom MEAs and monitored their electrophysiological activity for 21 days to assess culture maturation and network formation. As a complementary assessment, we quantified synaptic puncta and averaged spike waveforms to determine the difference in excitatory to inhibitory neuron ratio (E/I ratio) of the neurons. The results demonstrate that the microglia in the tri-culture do not disrupt neural network formation and stability and may be a better representation of the in vivo rat cortex due to its more similar E/I ratio as compared to more traditional isolated neuron and neuron-astrocyte co-cultures. In addition, only the tri-culture displayed a significant decrease in both the number of active channels and spike frequency following pro-inflammatory lipopolysaccharide exposure, highlighting the critical role of microglia in capturing electrophysiological manifestations of a representative neuroinflammatory insult. We expect the demonstrated technology to assist in studying various brain disease mechanisms. 
    more » « less