SUMMARY International Ocean Drilling Program (IODP) Expedition 341 recovered sediments from the south Alaska continental slope that preserves a well resolved and dated inclination record over most of the past ∼43 000 yr. The Site U1419 chronology is among the highest resolution in the world, constrained by 173 radiocarbon dates, providing the ability to study Palaeomagnetic Secular Variation (PSV) on centennial to millennial timescales. This record has an exceptionally expanded late Pleistocene sedimentary record with sedimentation rates commonly exceeding 100 cm kyr–1, while also preserving a lower resolution Holocene PSV record at the top. Natural and laboratory-induced magnetic remanences of U1419 u-channels from the 112-m-long spliced record were studied using stepwise AF demagnetization. Hysteresis loops were obtained on 95 and IRM acquisition curves on 9 discrete samples to facilitate magnetic domain state, coercivity and magnetic mineralogical determinations. Due to complexities related to lithology, magnetic mineralogy, and depositional and post-depositional processes, Site U1419 sediments are not suitable for palaeointensity studies and declination could not be robustly reconstructed. Progressive (titano-)magnetite dissolution with depth results in decreasing NRM intensity and signal-to-noise that is exacerbated at higher demagnetization steps. As a result, inclination measured after the 20 mT AF demagnetization step provides the most reliable directional record. Inclination appears to be well resolved with removal of just a few intervals influenced by depositional and/or sampling and coring deformation. The shipboard inclination stack from nearby IODP Site U1418, on a new age model developed from 19 radiocarbon dates on U1418 and 18 magnetic susceptibility-based tie-points to site survey core EW0408-87JC, verifies centennial to millennial scale variations in inclination observed in U1419. Comparisons with other independently dated records from the NE Pacific and western North America suggest that these sites likely capture regional geomagnetic variability. As such, this new high-resolution and well-dated inclination record, especially robust between 15 and 30 cal kyr BP, offers new geomagnetic insights and a regional correlation tool to explore this generally understudied part of the world.
more »
« less
The Amplitude and Timescales of 0–15 ka Paleomagnetic Secular Variation in the Northern North Atlantic
Abstract We investigate the amplitude and frequency of directional geomagnetic change since 15 ka in the Northern North Atlantic (∼67°N) using five “ultra‐high” resolution continental shelf sediment cores deposited at rates greater than 1 m/kyr. The ages of these cores are constrained by 103 radiocarbon dates with reservoir ages assessed through tephra correlation to terrestrial archives. Our study aims to address many of the uncertainties that are common in sedimentary paleomagnetic studies, including signal attenuation in low to moderate resolution archives and difficulty to demonstrate reproducibility in higher resolution archives. The “ultra‐high” accumulation rates of our cores reduce “lock‐in” and smoothing uncertainties associated with magnetic acquisition processes. Abundant radiocarbon dates along with an objective alignment algorithm provide a test of signal reproducibility at sub‐millennial timescales. The paleomagnetic secular variation (PSV) signal, evaluated as individual records and as a new stack (GREENICE15k), validates prior results, but provides stronger geochronological constraints, demonstrates a reproducible PSV signal and amplitude, and extends through the abrupt Bølling–Allerød and Younger Dryas climate transitions of the latest Pleistocene. While broadly consistent with time‐varying spherical harmonic models and varve dated records from Northern Europe, we demonstrate greater variance and higher amplitudes—particularly at sub‐millennial timescales. This robust variability on centennial timescales is rarely observed or discussed, but is likely important to our understanding of some of the most intriguing aspects of the geodynamo.
more »
« less
- Award ID(s):
- 2300114
- PAR ID:
- 10426717
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Solid Earth
- Volume:
- 128
- Issue:
- 6
- ISSN:
- 2169-9313
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Palmer Deep sediment cores are used to produce the first high-resolution, continuous late Pleistocene to Holocene time-series from the Antarctic marine system. The sedimentary record is dated using accelerator mass spectrometer radiocarbon methods on acid insoluble organic matter and foraminiferal calcite. Fifty-four radiocarbon analyses are utilized in the dating which provides a calibrated timescale back to 13 ka BP. Reliability of resultant ages on organic matter is assured because duplicates produce a standard deviation from the surface age of less than laboratory error (i.e., ±50 years). In addition, surface organic matter ages at the site are in excellent agreement with living calcite ages at the accepted reservoir age of 1260 years for the Antarctic Peninsula. Spectral analyses of the magnetic susceptibility record against the age model reveal unusually strong periodicity in the 400,–200 and 50-70 year frequency bands, similar to other high-resolution records from the Holocene but, so far, unique for the circum-Antarctic. Here we show that comparison to icecore records of specific climatic events (e.g., the ’Little Ice Age‘, Neoglacial, Hypsithermal, and the Bølling/Allerød to Younger Dryas transition) provides improved focus upon the relative timing of atmosphere/ocean changes between the northern anid southern high latitudes.more » « less
-
null (Ed.)International Ocean Discovery Program Expedition 363 sought to document the regional expression and driving mechanisms of climate variability (e.g., temperature, precipitation, and productivity) in the Western Pacific Warm Pool (WPWP) as it relates to the evolution of Neogene climate on millennial, orbital, and geological timescales. To achieve our objectives, we selected sites with wide geographical distribution and variable oceanographic and depositional settings. Nine sites were cored during Expedition 363, recovering a total of 6956 m of sediment in 875–3421 m water depth with an average recovery of 101.3% during 39.6 days of on-site operations. Two sites are located off northwestern Australia at the southern extent of the WPWP and span the late Miocene to present. Seven sites are situated at the heart of the WPWP, including two sites on the northern margin of Papua New Guinea (PNG) with very high sedimentation rates spanning the past ~450 ky, two sites in the Manus Basin north of PNG with moderate sedimentation rates recovering upper Pliocene to present sequences, and three low sedimentation rate sites on the southern and northern parts of the Eauripik Rise spanning the early Miocene to present. The wide spatial distribution of the cores, variable accumulation rates, exceptional biostratigraphic and paleomagnetic age constraints, and mostly excellent foraminifer preservation will allow us to trace the evolution of the WPWP through the Neogene at different temporal resolutions, meeting the primary objectives of Expedition 363. Specifically, the high sedimentation–rate cores off PNG will allow us to better constrain mechanisms influencing millennial-scale variability in the WPWP, their links to high-latitude climate variability, and implications for temperature and precipitation variations in this region under variable climate conditions. Furthermore, these high accumulation rates offer the opportunity to study climate variability during previous warm periods at a resolution similar to existing studies of the Holocene. With excellent recovery, Expedition 363 sites are suitable for detailed paleoceanographic reconstructions at orbital and suborbital resolution from the middle Miocene to Pleistocene, and thus will be used to refine the astronomical tuning, magneto-, isotope, and biostratigraphy of hitherto poorly constrained intervals within the Neogene timescale (e.g., the late Miocene) and to reconstruct the history of the East Asian and Australian monsoon and the Indonesian Throughflow on orbital and tectonic timescales. Results from high-resolution interstitial water sampling at selected sites will be used to reconstruct density profiles of the western equatorial Pacific deep water during the Last Glacial Maximum. Additional geochemical analyses of interstitial water samples in this tectonically active region will be used to investigate volcanogenic mineral and carbonate weathering and their possible implications for the evolution of Neogene climate.more » « less
-
Abstract Herein we document and interpret an absolute chronological dating attempt using geomagnetic paleointensity data from a post-glacial sediment drape on the western Antarctic Peninsula continental shelf. Our results demonstrate that absolute dating can be established in Holocene Antarctic shelf sediments that lack suitable material for radiocarbon dating. Two jumbo piston cores of 10-m length were collected in the Western Bransfield Basin. The cores preserve a strong, stable remanent magnetization and meet the magnetic mineral assemblage criteria recommended for reliable paleointensity analyses. The relative paleomagnetic intensity records were tuned to published absolute and relative paleomagnetic stacks, which yielded a record of the last ∼8500 years for the post-glacial drape. Four tephra layers associated with documented eruptions of nearby Deception Island have been dated at 3.31, 3.73, 4.44, and 6.86 ± 0.07 ka using the geomagnetic paleointensity method. This study establishes the dual role of geomagnetic paleointensity and tephrochronology in marine sediments across both sides of the northern Antarctic Peninsula.more » « less
-
null (Ed.)International Ocean Discovery Program Expedition 363 sought to document the regional expression and driving mechanisms of climate variability (e.g., temperature, precipitation, and productivity) in the Indo-Pacific Warm Pool (IPWP) as it relates to the evolution of Neogene climate on millennial, orbital, and geological timescales. To achieve our objectives, we selected sites with a wide geographical distribution and variable oceanographic and depositional settings. Nine sites were cored during Expedition 363, recovering a total of 6956 m of sediment in 875–3421 m water depth with an average recovery of 101.3% during 39.6 days of on-site operations. Two moderate sedimentation rate (~3–10 cm/ky) sites are located off northwestern Australia at the southwestern maximum extent of the IPWP and span the late Miocene to present. Seven of the nine sites are situated at the heart of the Western Pacific Warm Pool (WPWP), including two sites on the northern margin of Papua New Guinea with very high sedimentation rates (>60 cm/ky) spanning the past ~450 ky, two sites in the Manus Basin (north of Papua New Guinea) with moderate sedimentation rates (~4–14 cm/ky) recovering upper Pliocene to present sequences, and three sites with low sedimentation rates (~1–3 cm/ky) on the southern and northern Eauripik Rise spanning the early Miocene to present. The wide spatial distribution of the cores, variable accumulation rates, exceptional biostratigraphic and paleomagnetic age constraints, and mostly excellent or very good foraminifer preservation will allow us to trace the evolution of the IPWP through the Neogene at different temporal resolutions, meeting the primary objectives of Expedition 363. Specifically, the high–sedimentation rate cores off Papua New Guinea will allow us to better constrain mechanisms influencing millennial-scale variability in the WPWP, their links to high-latitude climate variability, and implications for temperature and precipitation in this region under variable mean-state climate conditions. Furthermore, the high accumulation rates offer the opportunity to study climate variability during previous warm periods at a resolution similar to that of existing studies of the Holocene. With excellent recovery, Expedition 363 sites are suitable for detailed paleoceanographic reconstructions at orbital and suborbital resolution from the middle Miocene to Pleistocene and thus will be used to refine the astronomical tuning, biostratigraphy, magnetostratigraphy, and isotope stratigraphy of hitherto poorly constrained intervals within the Neogene timescale (e.g., the late Miocene) and to reconstruct the history of the Asian-Australian monsoon and the Indonesian Throughflow on orbital and tectonic timescales. Results from high-resolution interstitial water sampling at selected sites will be used to reconstruct density profiles of the western equatorial Pacific deep water during the Last Glacial Maximum. Additional geochemical analyses of interstitial water samples in this tectonically active region will be used to investigate volcanogenic mineral and carbonate weathering and their possible implications for the evolution of Neogene climate.more » « less
An official website of the United States government
