skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Chronology of the Palmer Deep site, Antarctic Peninsula: a Holocene palaeoenvironmental reference for the circum-Antarctic
Palmer Deep sediment cores are used to produce the first high-resolution, continuous late Pleistocene to Holocene time-series from the Antarctic marine system. The sedimentary record is dated using accelerator mass spectrometer radiocarbon methods on acid insoluble organic matter and foraminiferal calcite. Fifty-four radiocarbon analyses are utilized in the dating which provides a calibrated timescale back to 13 ka BP. Reliability of resultant ages on organic matter is assured because duplicates produce a standard deviation from the surface age of less than laboratory error (i.e., ±50 years). In addition, surface organic matter ages at the site are in excellent agreement with living calcite ages at the accepted reservoir age of 1260 years for the Antarctic Peninsula. Spectral analyses of the magnetic susceptibility record against the age model reveal unusually strong periodicity in the 400,–200 and 50-70 year frequency bands, similar to other high-resolution records from the Holocene but, so far, unique for the circum-Antarctic. Here we show that comparison to icecore records of specific climatic events (e.g., the ’Little Ice Age‘, Neoglacial, Hypsithermal, and the Bølling/Allerød to Younger Dryas transition) provides improved focus upon the relative timing of atmosphere/ocean changes between the northern anid southern high latitudes.  more » « less
Award ID(s):
9615695
PAR ID:
10530261
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Sage Journals
Date Published:
Journal Name:
The Holocene
Volume:
11
Issue:
1
ISSN:
0959-6836
Page Range / eLocation ID:
1 to 9
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Radiocarbon dating is arguably the most common method for dating Quaternary deposits. However, accurate age assignments using radiocarbon dating are dependent on knowing the radiocarbon reservoir. For the coastal waters across Antarctica, the radiocarbon reservoirs show significant variation, ranging from 700 to 6000 years depending on the material dated and the period in question. In this study, we examine the radiocarbon reservoir age for the shallow waters of the Southern Ocean using 23 whale bones salvaged from commercial whaling operations on or near the Western Antarctic Peninsula between 1904 and 1916. The species origin of the bones had been identified previously as humpback, fin, or blue whales using sequences of mitochondrial (mt)DNA. We find an average reservoir age of 1050 ± 135 years for these 23 whale bones, with a <100-year difference in the reservoir age by species. A comparison between our results and other studies through the Holocene suggest that the Southern Ocean surface water radiocarbon reservoir age is of a similar magnitude across much of Antarctica and has not significantly changed for the last 14,000 years. Combining our new ages with existing data sets provides insight to the stability of the Southern Ocean marine radiocarbon reservoir age, enhancing our understanding of ocean ventilation and upwelling dynamics throughout the Holocene. 
    more » « less
  2. ABSTRACT The radiocarbon ( 14 C) content of simultaneously deposited substrates in lacustrine archives may differ due to reservoir and detrital effects, complicating the development of age models and interpretation of proxy records. Multi-substrate 14 C studies quantifying these effects remain rare, however, particularly for large, terminal lake systems, which are excellent recorders of regional hydroclimate change. We report 14 C ages of carbonates, brine shrimp cysts, algal mat biomass, total organic carbon (TOC), terrestrial macrofossils, and n -alkane biomarkers from Holocene sediments of the Great Salt Lake (GSL), Utah. 14 C ages for co-deposited aquatic organic substrates are generally consistent, with small offsets that may reflect variable terrestrial organic matter inputs to the system. Carbonates and long-chain n -alkanes derived from vascular plants, however, are ∼1000–4000 14 C years older than other substrates, reflecting deposition of pre-aged detrital materials. All lacustrine substrates are 14 C-depleted compared to terrestrial macrofossils, suggesting that the reservoir age of the GSL was > 1200 years throughout most of the Holocene, far greater than the modern reservoir age of the lake (∼300 years). These results suggest good potential for multi-substrate paleoenvironmental reconstruction from Holocene GSL sediments but point to limitations including reservoir-induced uncertainty in 14 C chronologies and attenuation and time-shifting of some proxy signals due to detrital effects. 
    more » « less
  3. The El Niño Southern Oscillation (ENSO) is a major source of global interannual climate variability, however our ability to predict the response of ENSO to changes in the mean state of climate is limited in part by a paucity of long-term records of ENSO. The sediment record from Laguna Pallcacocha in El Cajas National Park, southern Ecuador (4060 masl; 2°46’S; 79°14’W) records El Niño floods spanning the Holocene (Rodbell et al., 1999; Moy et al., 2002; Mark et al., 2022). The sediment record is unusual for the nearly continuous dark- and light-colored laminations (0.1-2.0 cm thick) that comprise the Holocene section. Light laminae represent deposition during periods of increased precipitation, mobilization of unvegetated sediment above the lake, and increased stream discharge, all of which generate density-driven undercurrents. Conversely, dark laminae are deposited relatively slowly by sedimentation of organic matter. To date, no other lake has yielded such a high-resolution record of rainfall events, and here we review sediment cores from the western-most lakes in the region that are most likely to also be influenced by convective driven precipitation during coastal (Pacific) El Niño events. All lakes in this region contain multiple distal tephra 0.1-1.0 cm thick that enable precise correlation among records. Cores from Laguna Pampiada, Pampiada Bog, and Laguna Narigüiña are all located between 3500 and 4000 masl, all are located within steep catchments, and cores from these lakes reveal high-resolution records of clastic sediment delivery as recorded in bulk magnetic susceptibility. The stratigraphy of flood plain alluvium in the catchment of lakes studied provides an independent record of the geomorphic response to intense rainfall events. Buried soil A-horizons are clear indicators of major flooding events, and radiocarbon dates from charcoal in the uppermost sections of these A horizons can provide age estimates for large magnitude rain events and resultant floods that are comparable to the record from lake sediment cores. A 3-year record of atmospheric pressure and temperature from a data logger located at 4143 masl in El Cajas National Park provides the basis for comparing atmospheric conditions in the region of the studied lakes with those at sea level on the Ecuador coast, ~50 km to the west. 
    more » « less
  4. Abstract. Open questions remain around the Holocene variability of climate in Iceland, including the relative impacts of natural and anthropogenic factors on Late Holocene vegetation change and soil erosion. The lacustrine sediment record from Torfdalsvatn, north Iceland, is the longest known in Iceland (≤12000 cal a BP) and along with its high sedimentation rate, provides an opportunity to develop high-resolution quantitative records that address these challenges. In this study, we use two sediment cores from Torfdalsvatn to construct a high-resolution age model derived from marker tephra layers, paleomagnetic secular variation, and radiocarbon. We then apply this robust age constraint to support a complete tephrochronology (>2200 grains analyzed in 33 tephra horizons) and sub-centennial geochemical (MS, TOC, C/N, δ13C, and BSi) and algal pigment records. Along with previously published proxy records from the same lake, these records demonstrate generally stable terrestrial and aquatic conditions during the Early and Middle Holocene, except for punctuated disturbances linked to major tephra fall events. During the Late Holocene, there is strong evidence for naturally driven algal productivity decline beginning around 1800 cal a BP. These changes closely follow regional Late Holocene cooling driven by decreases in Northern Hemisphere summer insolation and the expansion of sea-ice laden Polar Water around Iceland. Then at 880 cal a BP, ~200 years after the presumed time of human settlement, a second shift in the record begins and is characterized by a strong uptick in landscape instability and possibly soil erosion. Collectively, the Torfdalsvatn record highlights the resilience of low-elevation, low-relief catchments to the pre-settlement soil erosion in Iceland, despite a steadily cooling background climate. The precisely dated, high-resolution tephra and paleoenvironmental record from this site can serve as a regional template for north Iceland. 
    more » « less
  5. Abstract Herein we document and interpret an absolute chronological dating attempt using geomagnetic paleointensity data from a post-glacial sediment drape on the western Antarctic Peninsula continental shelf. Our results demonstrate that absolute dating can be established in Holocene Antarctic shelf sediments that lack suitable material for radiocarbon dating. Two jumbo piston cores of 10-m length were collected in the Western Bransfield Basin. The cores preserve a strong, stable remanent magnetization and meet the magnetic mineral assemblage criteria recommended for reliable paleointensity analyses. The relative paleomagnetic intensity records were tuned to published absolute and relative paleomagnetic stacks, which yielded a record of the last ∼8500 years for the post-glacial drape. Four tephra layers associated with documented eruptions of nearby Deception Island have been dated at 3.31, 3.73, 4.44, and 6.86 ± 0.07 ka using the geomagnetic paleointensity method. This study establishes the dual role of geomagnetic paleointensity and tephrochronology in marine sediments across both sides of the northern Antarctic Peninsula. 
    more » « less