skip to main content


Title: Binding of Nitriles and Isonitriles to V(III) and Mo(III) Complexes: Ligand vs Metal Controlled Mechanism
Award ID(s):
1955612
PAR ID:
10426719
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Inorganic Chemistry
Volume:
62
Issue:
27
ISSN:
0020-1669
Page Range / eLocation ID:
p. 10559-10571
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We synthesize and characterize As(Cys)3, Sb(Cys)3, and Bi(Cys)3, describe their crystal structures, analyze structural trends across Pn(SR)3compounds, and compare their features to the structures of proteins with these centers bound to Cys3motifs.

     
    more » « less
  2. New coordination environments are reported for Np( iii ) and Pu( iii ) based on pilot studies of U( iii ) in 2.2.2-cryptand (crypt). The U( iii )-in-crypt complex, [U(crypt)I 2 ][I], obtained from the reaction between UI 3 and crypt, is treated with Me 3 SiOTf (OTf = O 3 SCF 3 ) in benzene to form the [U(crypt)(OTf) 2 ][OTf] complex. Similarly, the isomorphous Np( iii ) and Pu( iii ) complexes were obtained similarly starting from [AnI 3 (THF) 4 ]. All three complexes (1-An; An = U, Np, Pu) contain an encapsulated actinide in a THF-soluble complex. Absorption spectroscopy and DFT calculations are consistent with 5f 3 U( iii ), 5f 4 Np( iii ), and 5f 5 Pu( iii ) electron configurations. 
    more » « less
  3. Abstract Americium is a highly radioactive actinide element found in used nuclear fuel. Its adsorption on aluminum (hydr)oxide minerals is important to study for at least two reasons: (i) aluminum (hydr)oxide minerals are ubiquitous in the subsurface environment and (ii) bentonite clays, which are proposed engineered barriers for the geologic disposal of used nuclear fuel, have the same ≡AlOH sites as aluminum (hydr)oxide minerals. Surface complexation modeling is widely used to interpret the adsorption behavior of heavy metals on mineral surfaces. While americium sorption is understudied, multiple adsorption studies for europium, a chemical analog, are available. In this study we compiled data describing Eu(III) adsorption on three aluminum (hydr)oxide minerals—corundum (α-Al 2 O 3 ), γ-alumina (γ-Al 2 O 3 ) and gibbsite (γ-Al(OH) 3 )—and developed surface complexation models for Eu(III) adsorption on these minerals by employing diffuse double layer (DDL) and charge distribution multisite complexation (CD-MUSIC) electrostatic frameworks. We also developed surface complexation models for Am(III) adsorption on corundum (α-Al 2 O 3 ) and γ-alumina (γ-Al 2 O 3 ) by employing a limited number of Am(III) adsorption data sourced from literature. For corundum and γ-alumina, two different adsorbed Eu(III) species, one each for strong and weak sites, were found to be important regardless of which electrostatic framework was used. The formation constant of the weak site species was almost 10,000 times weaker than the formation constant for the corresponding strong site species. For gibbsite, two different adsorbed Eu(III) species formed on the single available site type and were important for the DDL model, whereas the best-fit CD-MUSIC model for Eu(III)-gibbsite system required only one Eu(III) surface species. The Am(III)-corundum model based on the CD-MUSIC framework had the same set of surface species as the Eu(III)-corundum model. However, the log K values of the surface reactions were different. The best-fit Am(III)-corundum model based on the DDL framework had only one site type. Both the CD-MUSIC and the DDL model developed for Am(III)-γ-alumina system only comprised of one site type and the formation constant of the corresponding surface species was ~ 500 times stronger and ~ 700 times weaker than the corresponding Eu(III) species on the weak and the strong sites, respectively. The CD-MUSIC model for corundum and both the DDL and the CD-MUSIC models for γ-alumina predicted the Am(III) adsorption data very well, whereas the DDL model for corundum overpredicted the Am(III) adsorption data. The root mean square of errors of the DDL and CD-MUSIC models developed in this study were smaller than those of two previously-published models describing Am(III)-γ-alumina system, indicating the better predictive capacity of our models. Overall, our results suggest that using Eu(III) as an analog for Am(III) is practical approach for predicting Am(III) adsorption onto well-characterized minerals. Graphical Abstract 
    more » « less