skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 3, 2025

Title: Synthesis and structural characterization of the heavy tricysteinylpnictines, models of protein-bound As(III), Sb(III), and Bi(III)
We synthesize and characterize As(Cys)3, Sb(Cys)3, and Bi(Cys)3, describe their crystal structures, analyze structural trends across Pn(SR)3compounds, and compare their features to the structures of proteins with these centers bound to Cys3motifs.  more » « less
Award ID(s):
2018501
PAR ID:
10562820
Author(s) / Creator(s):
;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Dalton Transactions
Volume:
53
Issue:
47
ISSN:
1477-9226
Page Range / eLocation ID:
18890-18901
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT This study focuses on investigating the conformational structure and zinc(II) affinity of a zinc finger‐like motif (ZFM) peptide with the sequence acetyl‐His1‐Cys2‐Gly3‐Pro4‐Gly5‐His6‐Cys7, where bold highlights the potential zinc(II) binding sites. Zinc fingers are crucial protein motifs known for their high specificity and affinity for zinc ions. The ZFM peptide's sequence contains the 2His‐2Cys zinc‐binding sites similar to those in natural zinc finger proteins but without the hydrophobic core, making it a valuable model for studying zinc(II)–peptide interactions. Previous research on related peptides showed that collision cross sections and B3LYP modeling predicted that the His‐2Cys‐carboxyl terminus coordination of zinc(II) was more stable than the 2His‐2Cys. Employing a comprehensive approach integrating ion mobility–mass spectrometry and theoretical modeling techniques, various zinc(II) binding modes of the ZFM have been thoroughly compared to ascertain their influence on the competitive threshold collision‐induced dissociation method for measuring the relative gas‐phase Zn(II) affinity of the ZFM peptide. The measured Zn(II) affinity of ZFM is greater than those measured recently for two peptides with similar primary structures, acetyl‐His1‐Cys2‐Gly3‐Pro4‐Gly5‐Gly6‐Cys7and acetyl‐Asp1‐His2‐Gly3‐Pro4‐Gly5‐Gly6‐Cys7, indicating the preference for the His1‐Cys2‐His6‐Cys7side groups for coordinating zinc(II) over the His‐2Cys‐carboxyl terminus or Asp‐His‐Cys‐carboxyl terminus in these related heptapeptides. 
    more » « less
  2. Abstract The analog methanobactin (amb) peptide with the sequence ac‐His1‐Cys2‐Gly3‐Pro4‐Tyr5‐His6‐Cys7(amb5A) will bind the metal ions of zinc, nickel, and copper. To further understand how amb5Abinds these metals, we have undertaken a series of studies of structurally related heptapeptides where one or two of the potential His or Cys binding sites have been replaced by Gly, or the C‐terminus has been blocked by amidation. The studies were designed to compare how these metals bind to these sequences in different pH solutions of pH 4.2 to 10 and utilized native electrospray ionization (ESI) with ion mobility‐mass spectrometry (IM‐MS) which allows for the quantitative analysis of the charged species produced during the reactions. The native ESI conditions were chosen to conserve as much of the solution‐phase behavior of the amb peptides as possible and an analysis of how the IM‐MS results compare with the expected solution‐phase behavior is discussed. The oligopeptides studied here have applications for tag‐based protein purification methods, as therapeutics for diseases caused by elevated metal ion levels or as inhibitors for metal‐protein enzymes such as matrix metalloproteinases. 
    more » « less
  3. Abstract Herein, we report on the synthesis of ultrasmall Pd nanoclusters (∼2 nm) protected by L‐cysteine [HOCOCH(NH2)CH2SH] ligands (Pdn(L‐Cys)m) and supported on the surfaces of CeO2, TiO2, Fe3O4, and ZnO nanoparticles for CO catalytic oxidation. The Pdn(L‐Cys)mnanoclusters supported on the reducible metal oxides CeO2, TiO2and Fe3O4exhibit a remarkable catalytic activity towards CO oxidation, significantly higher than the reported Pd nanoparticle catalysts. The high catalytic activity of the ligand‐protected clusters Pdn(L‐Cys)mis observed on the three reducible oxides where 100 % CO conversion occurs at 93–110 °C. The high activity is attributed to the ligand‐protected Pd nanoclusters where the L‐cysteine ligands aid in achieving monodispersity of the Pd clusters by limiting the cluster size to the active sub‐2‐nm region and decreasing the tendency of the clusters for agglomeration. In the case of the ceria support, a complete removal of the L‐cysteine ligands results in connected agglomerated Pd clusters which are less reactive than the ligand‐protected clusters. However, for the TiO2and Fe3O4supports, complete removal of the ligands from the Pdn(L‐Cys)mclusters leads to a slight decrease in activity where the T100%CO conversion occurs at 99 °C and 107 °C, respectively. The high porosity of the TiO2and Fe3O4supports appears to aid in efficient encapsulation of the bare Pdnnanoclusters within the mesoporous pores of the support. 
    more » « less
  4. Abstract With the goal of generating anionic analogues to MN2S2⋅Mn(CO)3Br we introduced metallodithiolate ligands, MN2S22−prepared from the Cys‐X‐Cys biomimetic, ema4−ligand (ema=N,N′‐ethylenebis(mercaptoacetamide); M=NiII, [VIV≡O]2+and FeIII) to Mn(CO)5Br. An unexpected, remarkably stable dimanganese product, (H2N2(CH2C=O(μ‐S))2)[Mn(CO)3]2resulted from loss of M originally residing in the N2S24−pocket, replaced by protonation at the amido nitrogens, generating H2ema2−. Accordingly, the ema ligand has switched its coordination mode from an N2S24−cavity holding a single metal, to a binucleating H2ema2−with bridging sulfurs and carboxamide oxygens within Mn‐μ‐S‐CH2‐C‐O, 5‐membered rings. In situ metal‐templating by zinc ions gives quantitative yields of the Mn2product. By computational studies we compared the conformations of “linear” ema4−to ema4−frozen in the “tight‐loop” around single metals, and to the “looser” fold possible for H2ema2−that is the optimal arrangement for binucleation. XRD molecular structures show extensive H‐bonding at the amido‐nitrogen protons in the solid state. 
    more » « less
  5. Abstract NifA is a σ54activator that turns on bacterial nitrogen fixation under reducing conditions and when fixed cellular nitrogen levels are low. The redox sensing mechanism in NifA is poorly understood. In α- and β-proteobacteria, redox sensing involves two pairs of Cys residues within and immediately following the protein’s central AAA+domain. In this work, we examine if an additional Cys pair that is part of a C(X)5 C motif and located immediately upstream of the DNA binding domain of NifA from the α-proteobacteriumGluconacetobacter diazotrophicus(Gd) is involved in redox sensing. We hypothesize that the Cys residues’ redox state may directly influence the DNA binding domain’s DNA binding affinity and/or alter the protein’s oligomeric sate. Two DNA binding domain constructs were generated, a longer construct (2C-DBD), consisting of the DNA binding domain with the upstream Cys pair, and a shorter construct (NC-DBD) that lacks the Cys pair. TheKdof NC-DBD for its cognate DNA sequence (nifH-UAS) is equal to 20.0 µM. TheKdof 2C-DBD for nifH-UAS when the Cys pair is oxidized is 34.5 µM. Reduction of the disulfide bond does not change the DNA binding affinity. Additional experiments indicate that the redox state of the Cys residues does not influence the secondary structure or oligomerization state of the NifA DNA binding domain. Together, these results demonstrate that the Cys pair upstream of the DNA binding domain ofGd-NifA does not regulate DNA binding or domain dimerization in a redox dependent manner. 
    more » « less