The Internet of Medical Things (IoMT) is a network of interconnected medical devices, wearables, and sensors integrated into healthcare systems. It enables real-time data collection and transmission using smart medical devices with trackers and sensors. IoMT offers various benefits to healthcare, including remote patient monitoring, improved precision, and personalized medicine, enhanced healthcare efficiency, cost savings, and advancements in telemedicine. However, with the increasing adoption of IoMT, securing sensitive medical data becomes crucial due to potential risks such as data privacy breaches, compromised health information integrity, and cybersecurity threats to patient information. It is necessary to consider existing security mechanisms and protocols and identify vulnerabilities. The main objectives of this paper aim to identify specific threats, analyze the effectiveness of security measures, and provide a solution to protect sensitive medical data. In this paper, we propose an innovative approach to enhance security management for sensitive medical data using blockchain technology and smart contracts within the IoMT ecosystem. The proposed system aims to provide a decentralized and tamper-resistant plat- form that ensures data integrity, confidentiality, and controlled access. By integrating blockchain into the IoMT infrastructure, healthcare organizations can significantly enhance the security and privacy of sensitive medical data.
more »
« less
AGI for Agriculture
Artificial General Intelligence (AGI) is poised to revolutionize a variety of sectors, including healthcare, finance, transportation, and education. Within healthcare, AGI is being utilized to analyze clinical medical notes, recognize patterns in patient data, and aid in patient management. Agriculture is another critical sector that impacts the lives of individuals worldwide. It serves as a foundation for providing food, fiber, and fuel, yet faces several challenges, such as climate change, soil degradation, water scarcity, and food security. AGI has the potential to tackle these issues by enhancing crop yields, reducing waste, and promoting sustainable farming practices. It can also help farmers make informed decisions by leveraging real-time data, leading to more efficient and effective farm management. This paper delves into the potential future applications of AGI in agriculture, such as agriculture image processing, natural language processing (NLP), robotics, knowledge graphs, and infrastructure, and their impact on precision livestock and precision crops. By leveraging the power of AGI, these emerging technologies can provide farmers with actionable insights, allowing for optimized decision-making and increased productivity. The transformative potential of AGI in agriculture is vast, and this paper aims to highlight its potential to revolutionize the industry.
more »
« less
- Award ID(s):
- 2104032
- PAR ID:
- 10426725
- Date Published:
- Journal Name:
- arXivorg
- ISSN:
- 2331-8422
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Diabetes management requires constant monitoring and individualized adjustments. This study proposes a novel approach that leverages digital twins and personal health knowledge graphs (PHKGs) to revolutionize diabetes care. Our key contribution lies in developing a real-time, patient-centric digital twin framework built on PHKGs. This framework integrates data from diverse sources, adhering to HL7 standards and enabling seamless information access and exchange while ensuring high levels of accuracy in data representation and health insights. PHKGs offer a flexible and efficient format that supports various applications. As new knowledge about the patient becomes available, the PHKG can be easily extended to incorporate it, enhancing the precision and accuracy of the care provided. This dynamic approach fosters continuous improvement and facilitates the development of new applications. As a proof of concept, we have demonstrated the versatility of our digital twins by applying it to different use cases in diabetes management. These include predicting glucose levels, optimizing insulin dosage, providing personalized lifestyle recommendations, and visualizing health data. By enabling real-time, patient-specific care, this research paves the way for more precise and personalized healthcare interventions, potentially improving long-term diabetes management outcomes.more » « less
-
Abstract Precision agriculture (PA) has been defined as a “management strategy that gathers, processes and analyzes temporal, spatial and individual data and combines it with other information to support management decisions according to estimated variability for improved resource use efficiency, productivity, quality, profitability and sustainability of agricultural production.” This definition suggests that because PA should simultaneously increase food production and reduce the environmental footprint, the barriers to adoption of PA should be explored. These barriers include (1) the financial constraints associated with adopting decision support system (DSS); (2) the hesitancy of farmers to change from their trusted advisor to a computer program that often behaves as a black box; (3) questions about data ownership and privacy; and (4) the lack of a trained workforce to provide the necessary training to implement DSSs on individual farms. This paper also discusses the lessons learned from successful and unsuccessful efforts to implement DSSs, the importance of communication with end users during DSS development, and potential career opportunities that DSSs are creating in PA.more » « less
-
Precision agricultural technologies (PA) such as global positioning system tools have been commercially available since the early 1990s and they are widely thought to have environmental and economic benefit; however, adoption studies show uneven adoption among farmers in the U.S. and Europe. This study aims to tackle a lingering puzzle regarding why some farmers adopt precision agriculture as an approach to food production and why others do not. The specific objective of this study is to examine the social and biophysical determinants of farmers’ adoption of PA. This paper fills a research gap by including measurements of farmer identity—specifically their own conceptions of their role in the food system—as well as their perceptions of biophysical risks as these relate to the adoption of PA among a large sample of Midwestern U.S. farmers. The study has identified that farmer identity and perceptions of environmental risk do indeed influence PA adoption and that these considerations ought to be incorporated into further studies of PA adoption in other jurisdictions. The findings also appear to highlight the social force of policy and industry efforts to frame PA as not only good for productivity and efficiency but also as an ecologically beneficial technology.more » « less
-
The continuous evolution of the IoT paradigm has been extensively applied across various application domains, including air traffic control, education, healthcare, agriculture, transportation, smart home appliances, and others. Our primary focus revolves around exploring the applications of IoT, particularly within healthcare, where it assumes a pivotal role in facilitating secure and real-time remote patient-monitoring systems. This innovation aims to enhance the quality of service and ultimately improve people’s lives. A key component in this ecosystem is the Healthcare Monitoring System (HMS), a technology-based framework designed to continuously monitor and manage patient and healthcare provider data in real time. This system integrates various components, such as software, medical devices, and processes, aimed at improvi1g patient care and supporting healthcare providers in making well-informed decisions. This fosters proactive healthcare management and enables timely interventions when needed. However, data transmission in these systems poses significant security threats during the transfer process, as malicious actors may attempt to breach security protocols.This jeopardizes the integrity of the Internet of Medical Things (IoMT) and ultimately endangers patient safety. Two feature sets—biometric and network flow metric—have been incorporated to enhance detection in healthcare systems. Another major challenge lies in the scarcity of publicly available balanced datasets for analyzing diverse IoMT attack patterns. To address this, the Auxiliary Classifier Generative Adversarial Network (ACGAN) was employed to generate synthetic samples that resemble minority class samples. ACGAN operates with two objectives: the discriminator differentiates between real and synthetic samples while also predicting the correct class labels. This dual functionality ensures that the discriminator learns detailed features for both tasks. Meanwhile, the generator produces high-quality samples that are classified as real by the discriminator and correctly labeled by the auxiliary classifier. The performance of this approach, evaluated using the IoMT dataset, consistently outperforms the existing baseline model across key metrics, including accuracy, precision, recall, F1-score, area under curve (AUC), and confusion matrix results.more » « less
An official website of the United States government

