skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Critical Media Literacy for Sports Technology Design
This work is part of an ongoing Sports, Technology, and Learning class where computer science students and student-athletes learn different aspects of technological development, ideation, design, and prototyping in the context of sports technologies. Alongside developing these technical skills, this class also takes advantage of various media related to sports to examine and discuss utilizing such media as a contextualizing factor in deciding what to build and why. Media depictions of sports and the role of technology in the creation of narratives and innovation is an often under-examined way of furthering understandings about the social construction of numerous phenomena like race, gender, and ability. In this poster, we present and discuss a pilot assignment using Critical Media Literacy (CML) tenets as an explicit tool for engaging with media discussions in class and how it can impact learners' understandings and practices around technology ideation, design, and critique. As the students engage with the media collected for the course, such as films & television, conference & journal articles, and sports journalism, they engage people outside of the class with course content and document the engagements in an assortment of formats (e.g., writing, podcasting, videos, drawings, etc.). The discussions continue throughout the quarter, aiming to develop the student's awareness of a context at the intersection of sports and technology that will inform their final design projects.  more » « less
Award ID(s):
2047693
PAR ID:
10426952
Author(s) / Creator(s):
Date Published:
Journal Name:
Special Interest Group in Computer Science Education (SIGCSE) 2023
Page Range / eLocation ID:
1314 to 1314
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Yeong, Foong May (Ed.)
    ABSTRACT Microbiology courses are often designed as either a lecture class with a laboratory component or a seminar-style class. Each type of course provides students with unique learning opportunities. Lab courses allow students to perform simple experiments that relate to fundamental concepts taught in the corresponding lectures, while seminar courses challenge students to read and discuss primary literature. Microbiology courses offering a combination of seminar-style discussions and laboratory procedures are rare. Our goal in the “Microbial Diversity and Pathogenesis” undergraduate course is to integrate experiences of a seminar class with those of a discovery-driven lab course, thereby strengthening students’ learning experiences through diversified didactic approaches. In the first half of the course, students read and discuss published peer-reviewed articles that cover major topics in both basic and applied microbiology, including antibiotic resistance, pathogenesis, and biotechnology applications. Complementing this primary literature, students perform microbiology experiments related to the topics covered in the readings. The assigned readings, discussions, and experiments provide a foundation in the second half of the course for inquiry-based exploratory research using student-designed transposon screens and selections. The course culminates in each student drafting a hypothesis-driven research proposal based on their literature review, their learned experimental techniques, and the preliminary data generated as a class. Through such first-hand experimental experience, students gain fundamental lab skills that are applicable beyond the realm of microbiology, such as sterile technique and learning how to support conclusions with scientific evidence. We observed a tremendous synergy between the seminar and lab aspects of our course. This unique didactic experience allows students to understand and connect primary literature to their experiments, while the discovery-driven aspect of this approach fosters active engagement of students with scientific research. 
    more » « less
  2. Involving undergraduate STEM majors in authentic research has been cited as being an imperative goal in advancing the field of science and preparing students for careers and post-graduate educational programs. An important component of authentic research that is often overlooked is student understanding of the Nature of Science (NOS) and how this relates to novel research. Previous research in these authentic settings appears to have depended upon an implicit approach to the teaching of NOS, and, not surprisingly, these studies revealed that students’ understandings only marginally improved. Research in authentic setting since indicates students develop deeper understandings of NOS in general, but struggle with more abstract concepts, such as the role of social and cultural influences as well as imagination and creativity in science. Therefore, the purpose of this qualitative study is to examine student understanding of these NOS concepts as they are engaged in novel research. NOS concepts were introduced using an explicit and reflective approach. Specifically, students were engaged with reflection questions, in-class discussions, historical narratives, and autobiographical stories of the instructor as they explored the NOS concepts and how these relate to scientific research. Student NOS understandings (n = 16) were measured pre/post using the SUSSI with semi-structured interviews taking place at the end of the course. The findings from the interviews revealed that students understanding of the NOS concepts improved. Students came to better understand how society and culture impact scientific research, and how imagination and creativity are used throughout the entire scientific process. Students largely cited the reflection questions and in-class discussions as contributing to their change in understanding in their responses to how their views changed. In discussing society and culture, students noted that they better understood how society impacts what and how research is conducted as well as noting instances where gender bias is still present in science today. Likewise, students indicated during the interviews how they came to understand how imagination and creativity can be found throughout the entire scientific process instead of just the stage where a research question is posed. This study shows the importance of discussing NOS using an explicit/reflective approach as it relates to authentic research in helping students develop deeper understandings. 
    more » « less
  3. Undergraduate science students who volunteer within a research laboratory group, or participate in funded research opportunities, in general are those who have the opportunity to engage in authentic research. In this article, we report the findings from two different iterations of a semester-long collaboration between a biology faculty member and a science education faculty member at a major research institution in the Southeastern United States. Specifically, the faculty members designed an ecology laboratory course for upper-level undergraduate students (primarily biology majors) where they would engage in an original and highly authentic ecological research project. The goal of this course was to have students explicitly learn about the nature of science (NOS), and authentic scientific practices such as inquiry and experimentation in the context of their own research. In the second year of the course, the global COVID-19 pandemic forced us to modify our approach to accomplish the same goals, but now in a remote and online format. Using questionnaires, concept inventories, and semi-structured interviews, the impact of the course on students’ understandings of NOS, inquiry, and experimentation, in addition to their perspectives on the experience within the course compared to prior laboratory coursework, was investigated. We found that students showed modest gains in each of the aforementioned desirable outcomes. These gains were generally comparable in both face-to-face and remote course settings. Additionally, students shared with us their preference for authentic laboratory work as compared with the typical laboratory work with its given research question and step-by-step instructions. Our research demonstrates what is possible in both face-to-face and remote undergraduate laboratory courses in biology and the positive impact that was observed in our students. We hope it serves as a model for other scientists and science educators as they collaborate to design authentic research-based coursework for undergraduate biology students. 
    more » « less
  4. BackgroundIncreasingly, college science courses are transitioning from a traditional lecture format to active learning because students learn more and fail less frequently when they engage in their learning through activities and discussions in class. Fear of negative evaluation (FNE), defined as a student’s sense of dread associated with being unfavorably evaluated while participating in a social situation, discourages undergraduates from participating in small group discussions, whole class discussions, and conversing one-on-one with instructors. ObjectiveThis study aims to evaluate the acceptability of a novel digital single-session intervention and to assess the feasibility of implementing it in a large enrollment college science course taught in an active learning way. MethodsTo equip undergraduates with skills to cope with FNE and bolster their confidence, clinical psychologists and biology education researchers developed Project Engage, a digital, self-guided single-session intervention for college students. It teaches students strategies for coping with FNE to bolster their confidence. Project Engage provides biologically informed psychoeducation, uses interactive elements for engagement, and helps generate a personalized action plan. We conducted a 2-armed randomized controlled trial to evaluate the acceptability and the preliminary effectiveness of Project Engage compared with an active control condition that provides information on available resources on the college campus. ResultsIn a study of 282 upper-level physiology students, participants randomized to complete Project Engage reported a greater increase in overall confidence in engaging in small group discussions (P=.01) and whole class discussions (P<.001), but not in one-on-one interactions with instructors (P=.05), from baseline to immediately after intervention outcomes, compared with participants in an active control condition. Project Engage received a good acceptability rating (1.22 on a scale of –2 to +2) and had a high completion rate (>97%). ConclusionsThis study provides a foundation for a freely available, easily accessible intervention to bolster student confidence for contributing in class. Trial RegistrationOSF Registries osf.io/4ca68 http://osf.io/4ca68 
    more » « less
  5. Motivation: This is a complete paper. There was a sudden shift from traditional learning to online learning in Spring 2020 with the outbreak of COVID-19. Although online learning is not a new topic of discussion, universities, faculty, and students were not prepared for this sudden change in learning. According to a recent article in ‘The Chronicle of Higher Education, “even under the best of circumstances, virtual learning requires a different, carefully crafted approach to engagement”. The Design Thinking course under study is a required freshmen level course offered in a Mid-western University. The Design Thinking course is offered in a flipped format where all the content to be learned is given to students beforehand and the in-class session is used for active discussions and hands-on learning related to the content provided at the small group level. The final learning objective of the course is a group project where student groups are expected to come up with functional prototypes to solve a real-world problem following the Design Thinking process. There were eighteen sections of the Design Thinking course offered in Spring 2020, and with the outbreak of COVID-19, a few instructors decided to offer synchronous online classes (where instructors were present online during class time and provided orientation and guidance just like a normal class) and a few others decided to offer asynchronous online classes (where orientation from the instructor was delivered asynchronous and the instructor was online during officially scheduled class time but interactions were more like office hours). Students were required to be present synchronously at the team level during the class time in a synchronous online class. In an asynchronous online class, students could be synchronous at the team level to complete their assignment any time prior to the deadline such that they could work during class time but they were not required to work at that time. Through this complete paper, we are trying to understand student learning, social presence and learner satisfaction with respect to different modes of instruction in a freshmen level Design Thinking course. Background: According to literature, synchronous online learning has advantages such as interaction, a classroom environment, and better course quality whereas asynchronous online learning has advantages such as self-controlled and self-directed learning. The disadvantages of synchronous online learning include the learning process, technology issues, and distraction. Social isolation, lack of interaction, and technology issue are a few disadvantages related to asynchronous online learning. Problem Being Addressed: There is a limited literature base investigating different modes of online instruction in a Design Thinking course. Through this paper, we are trying to understand and share the effectiveness of synchronous and asynchronous modes of instruction in an online Flipped Design Thinking Course. The results of the paper could also help in this time of pandemic by shedding light on the more effective way to teach highly active group-based classrooms for better student learning, social presence, and learner satisfaction. Method/Assessment: An end of semester survey was monitored in Spring 2020 to understand student experiences in synchronous and asynchronous Design Thinking course sections. The survey was sent to 720 students enrolled in the course in Spring 2020 and 324 students responded to the survey. Learning was measured using the survey instrument developed by Walker (2003) and the social presence and learner satisfaction was measured by the survey modified by Richardson and Swan (2003). Likert scale was used to measure survey responses. Anticipated Results: Data would be analyzed and the paper would be completed by draft paper submission. As the course under study is a flipped and active course with a significant component of group work, the anticipated results after analysis could be that one mode of instruction has higher student learning, social presence, and learner satisfaction compared to the other. 
    more » « less