skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Explicit and Reflective Approach to Teaching Nature of Science in a Course-Based Undergraduate Research Experience
Involving undergraduate STEM majors in authentic research has been cited as being an imperative goal in advancing the field of science and preparing students for careers and post-graduate educational programs. An important component of authentic research that is often overlooked is student understanding of the Nature of Science (NOS) and how this relates to novel research. Previous research in these authentic settings appears to have depended upon an implicit approach to the teaching of NOS, and, not surprisingly, these studies revealed that students’ understandings only marginally improved. Research in authentic setting since indicates students develop deeper understandings of NOS in general, but struggle with more abstract concepts, such as the role of social and cultural influences as well as imagination and creativity in science. Therefore, the purpose of this qualitative study is to examine student understanding of these NOS concepts as they are engaged in novel research. NOS concepts were introduced using an explicit and reflective approach. Specifically, students were engaged with reflection questions, in-class discussions, historical narratives, and autobiographical stories of the instructor as they explored the NOS concepts and how these relate to scientific research. Student NOS understandings (n = 16) were measured pre/post using the SUSSI with semi-structured interviews taking place at the end of the course. The findings from the interviews revealed that students understanding of the NOS concepts improved. Students came to better understand how society and culture impact scientific research, and how imagination and creativity are used throughout the entire scientific process. Students largely cited the reflection questions and in-class discussions as contributing to their change in understanding in their responses to how their views changed. In discussing society and culture, students noted that they better understood how society impacts what and how research is conducted as well as noting instances where gender bias is still present in science today. Likewise, students indicated during the interviews how they came to understand how imagination and creativity can be found throughout the entire scientific process instead of just the stage where a research question is posed. This study shows the importance of discussing NOS using an explicit/reflective approach as it relates to authentic research in helping students develop deeper understandings.  more » « less
Award ID(s):
1652312
PAR ID:
10460992
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Science & Education
ISSN:
0926-7220
Page Range / eLocation ID:
s11191-023-00441-8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Scientific instruments have long been a vital part of science, paving pathways to remarkable scientific advancements. Such advancements have changed the world both socially and culturally, especially in the past few decades. Students can be introduced to this idea through the concepts of nature of science (NOS): scientific observations are often filtered through apparatus, inferences can be made through observations, and science is a socially and culturally embedded practice. The curriculum often fails to emphasize the role of instruments in scientific practices, even in teaching laboratories. This study uses semistructured interviews to investigate the cognitive (thoughts) and affective (feelings) domains of first-year university students as they relate to scientific instrumentation, including students’ ideas of instruments. First, the study probed how general chemistry students conceptualize scientific instruments in relation to the three NOS notions. Second, students’ practices related to experimental data evaluation were investigated as data collection is a large part of psychomotor learning in laboratory. Third, students’ affective states toward learning about instruments were queried. The interview results suggested that a majority of participants acknowledge some ideas of NOS, while a few students displayed an advanced understanding when discussing scientific instruments and also tended to have higher interest and motivation toward learning about instruments. 
    more » « less
  2. Undergraduate science students who volunteer within a research laboratory group, or participate in funded research opportunities, in general are those who have the opportunity to engage in authentic research. In this article, we report the findings from two different iterations of a semester-long collaboration between a biology faculty member and a science education faculty member at a major research institution in the Southeastern United States. Specifically, the faculty members designed an ecology laboratory course for upper-level undergraduate students (primarily biology majors) where they would engage in an original and highly authentic ecological research project. The goal of this course was to have students explicitly learn about the nature of science (NOS), and authentic scientific practices such as inquiry and experimentation in the context of their own research. In the second year of the course, the global COVID-19 pandemic forced us to modify our approach to accomplish the same goals, but now in a remote and online format. Using questionnaires, concept inventories, and semi-structured interviews, the impact of the course on students’ understandings of NOS, inquiry, and experimentation, in addition to their perspectives on the experience within the course compared to prior laboratory coursework, was investigated. We found that students showed modest gains in each of the aforementioned desirable outcomes. These gains were generally comparable in both face-to-face and remote course settings. Additionally, students shared with us their preference for authentic laboratory work as compared with the typical laboratory work with its given research question and step-by-step instructions. Our research demonstrates what is possible in both face-to-face and remote undergraduate laboratory courses in biology and the positive impact that was observed in our students. We hope it serves as a model for other scientists and science educators as they collaborate to design authentic research-based coursework for undergraduate biology students. 
    more » « less
  3. Through our work to examine mathematical and computational learning in authentic and convivial contexts that requires creativity, imagination, reasoning, and discourse, we have theorized an experiential learning cycle that attends to the development of voice, agency, and identity needed in young people for an earned insurgency—the right to demand change. Our work underscores how the current situation that many students face in classrooms amounts to a type of cognitive segregation that denies these students access to authentic and empowering intellectual agency. By facilitating a process whereby students, using their own creative and imaginative means, intentionally develop a type of ownership over the exploration and application of the mathematical concepts they are being taught, we help students move from simple surface level, syntactic understandings, to deeper semantic learning that is more personally significant and meaningful. 
    more » « less
  4. Holme, Thomas A (Ed.)
    This paper presents a phenomenographic investigation on students’ experiences about research and poster presentations in a workshop-based undergraduate research experience with a focus on how the experience connects to the Science and Engineering Practices (SEPs) of the NRC A Framework for K-12 Science Education and the principles of CUREs. This provides insight into how these structured research experiences reflect particular SEPs and also elements of scientific practice that are not captured in the SEPs as they have been formulated previously. This work showcases the importance of future applications, failure, and creativity as additional science practices necessary for students to engage in authentic science. The SEPs and the additional elements of scientific practice are related to how students experience meaningful learning in the cognitive, psychomotor, and affective domains. Students highlighted the components of CUREs: importance of contributing relevant discoveries as a motivation for their research, the value of repetition and iteration in ensuring reliable and valid results, and the role of collaboration in seeing new perspectives and solving problems. As a result of presenting their results through a poster, students reported deeper understanding of their research topic, increased ability to articulate scientific concepts, and a better understanding of how to create a visually appealing poster. Students changed the vocabulary they used in their presentations to fit the knowledge level of their audience and highlighted their data in figures and explained other parts of their work in text. Moreover, they saw the poster as an outlet for their creativity. 
    more » « less
  5. While much is known about teacher learning of nature of science (NOS) concepts, less is known about how teachers develop an understanding of how to effectively teach NOS or how instructional views might differ across levels of the Family Resemblance Approach (FRA) wheel. Therefore, this study investigated the NOS instructional views related to different levels of the FRA wheel of preservice secondary science teachers as they completed a semester-long NOS course. At four times during the semester, data was collected through written documents and interviews about NOS instructional views. Participant NOS instructional views were evaluated in terms of three aspects of NOS teaching: explicit, reflective, and role of context (McComas et al., 2020). In terms of the explicit and reflective components of NOS instruction, participants generally progressed from utilizing inaccurate representations of NOS to inclusion of accurate implicit messages, and finally to explicit reflective instruction often mimicking course activities. As the semester progressed, their questioning also moved toward targeting more specific NOS aspects. As far as the role of context, participants moved from treating NOS as its own topic to a more embedded approach. Other findings include that preservice teachers tended to use more abstract and contextualized activities for social institutional aspects of NOS as opposed to concrete and moderately contextualized activities for cognitive-epistemic NOS. Features of the NOS course may account for some aspects of the learning progressions observed. 
    more » « less