skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Repair of noise-induced damage to stereocilia F-actin cores is facilitated by XIRP2 and its novel mechanosensor domain
Prolonged exposure to loud noise has been shown to affect inner ear sensory hair cells in a variety of deleterious manners, including damaging the stereocilia core. The damaged sites can be visualized as ‘gaps’ in phalloidin staining of F-actin, and the enrichment of monomeric actin at these sites, along with an actin nucleator and crosslinker, suggests that localized remodeling occurs to repair the broken filaments. Herein, we show that gaps in mouse auditory hair cells are largely repaired within 1 week of traumatic noise exposure through the incorporation of newly synthesized actin. We provide evidence that Xin actin binding repeat containing 2 (XIRP2) is required for the repair process and facilitates the enrichment of monomeric γ-actin at gaps. Recruitment of XIRP2 to stereocilia gaps and stress fiber strain sites in fibroblasts is force-dependent, mediated by a novel mechanosensor domain located in the C-terminus of XIRP2. Our study describes a novel process by which hair cells can recover from sublethal hair bundle damage and which may contribute to recovery from temporary hearing threshold shifts and the prevention of age-related hearing loss.  more » « less
Award ID(s):
2000554
PAR ID:
10426956
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
eLife
Volume:
12
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Cochlear hair cell stereocilia bundles are key organelles required for normal hearing. Often, deafness mutations cause aberrant stereocilia heights or morphology that are visually apparent but challenging to quantify. Actin-based structures, stereocilia are easily and most often labeled with phalloidin then imaged with 3D confocal microscopy. Unfortunately, phalloidin non-specifically labels all the actin in the tissue and cells and therefore results in a challenging segmentation task wherein the stereocilia phalloidin signal must be separated from the rest of the tissue. This can require many hours of manual human effort for each 3D confocal image stack. Currently, there are no existing software pipelines that provide an end-to-end automated solution for 3D stereocilia bundle instance segmentation. Here we introduce VASCilia, a Napari plugin designed to automatically generate 3D instance segmentation and analysis of 3D confocal images of cochlear hair cell stereocilia bundles stained with phalloidin. This plugin combines user-friendly manual controls with advanced deep learning-based features to streamline analyses. With VASCilia, users can begin their analysis by loading image stacks. The software automatically preprocesses these samples and displays them in Napari. At this stage, users can select their desired range of z-slices, adjust their orientation, and initiate 3D instance segmentation. After segmentation, users can remove any undesired regions and obtain measurements including volume, centroids, and surface area. VASCilia introduces unique features that measures bundle heights, determines their orientation with respect to planar polarity axis, and quantifies the fluorescence intensity within each bundle. The plugin is also equipped with trained deep learning models that differentiate between inner hair cells and outer hair cells and predicts their tonotopic position within the cochlea spiral. Additionally, the plugin includes a training section that allows other laboratories to fine-tune our model with their own data, provides responsive mechanisms for manual corrections through event-handlers that check user actions, and allows users to share their analyses by uploading a pickle file containing all intermediate results. We believe this software will become a valuable resource for the cochlea research community, which has traditionally lacked specialized deep learning-based tools for obtaining high-throughput image quantitation. Furthermore, we plan to release our code along with a manually annotated dataset that includes approximately 55 3D stacks featuring instance segmentation. This dataset comprises a total of 1,870 instances of hair cells, distributed between 410 inner hair cells and 1,460 outer hair cells, all annotated in 3D. As the first open-source dataset of its kind, we aim to establish a foundational resource for constructing a comprehensive atlas of cochlea hair cell images. Together, this open-source tool will greatly accelerate the analysis of stereocilia bundles and demonstrates the power of deep learning-based algorithms for challenging segmentation tasks in biological imaging research. Ultimately, this initiative will support the development of foundational models adaptable to various species, markers, and imaging scales to advance and accelerate research within the cochlea research community. 
    more » « less
  2. Steel, Karen P (Ed.)
    Age-related hearing loss (ARHL) is a common sensory impairment with complex underlying mechanisms. In our previous study, we performed a meta-analysis of genome-wide association studies (GWAS) in mice and identified a novel locus on chromosome 18 associated with ARHL specifically linked to a 32 kHz tone burst stimulus. Consequently, we investigated the role of Formin Homology 2 Domain Containing 3 (Fhod3), a newly discovered candidate gene for ARHL based on the GWAS results. We observed Fhod3 expression in auditory hair cells (HCs) primarily localized at the cuticular plate (CP). To understand the functional implications of Fhod3 in the cochlea, we generated Fhod3 overexpression mice (Pax2-Cre+/-; Fhod3Tg/+) (TG) and HC-specific conditional knockout mice (Atoh1-Cre+/-; Fhod3fl/fl) (KO). Audiological assessments in TG mice demonstrated progressive high-frequency hearing loss, characterized by predominant loss of outer hair cells, and a decreased phalloidin intensities of CP. Ultrastructural analysis revealed loss of the shortest row of stereocilia in the basal turn of the cochlea, and alterations in the cuticular plate surrounding stereocilia rootlets. Importantly, the hearing and HC phenotype in TG mice phenocopied that of the KO mice. These findings suggest that balanced expression of Fhod3 is critical for proper CP and stereocilia structure and function. Further investigation of Fhod3 related hearing impairment mechanisms may lend new insight towards the myriad mechanisms underlying ARHL, which in turn could facilitate the development of therapeutic strategies for ARHL. 
    more » « less
  3. null (Ed.)
    Pericentromeric heterochromatin is mostly composed of repeated DNA sequences, which are prone to aberrant recombination during double-strand break (DSB) repair. Studies in Drosophila and mouse cells revealed that ‘safe’ homologous recombination (HR) repair of these sequences relies on the relocalization of repair sites to outside the heterochromatin domain before Rad51 recruitment. Relocalization requires a striking network of nuclear actin filaments (F-actin) and myosins that drive directed motions. Understanding this pathway requires the detection of nuclear actin filaments that are significantly less abundant than those in the cytoplasm, and the imaging and tracking of repair sites for long time periods. Here, we describe an optimized protocol for live cell imaging of nuclear F-actin in Drosophila cells, and for repair focus tracking in mouse cells, including: imaging setup, image processing approaches, and analysis methods. We emphasize approaches that can be applied to identify the most effective fluorescent markers for live cell imaging, strategies to minimize photobleaching and phototoxicity with a DeltaVision deconvolution microscope, and image processing and analysis methods using SoftWoRx and Imaris software. These approaches enable a deeper understanding of the spatial and temporal dynamics of heterochromatin repair and have broad applicability in the fields of nuclear architecture, nuclear dynamics, and DNA repair. 
    more » « less
  4. Nuclear actin has been implicated in regulating cell fate, differentiation, and cellular reprogramming. However, its roles in development and tissue homeostasis remain largely unknown. Here we uncover the role of nuclear actin in regulating stemness usingDrosophilaovarian germline stem cells (GSCs) as a model. We find that the localization and structure of nuclear actin is dynamic in the early germ cells. Nuclear actin recognized by anti-actin C4 is found in both the nucleoplasm and nucleolus of GSCs. The polymeric nucleoplasmic C4 pool is lost after the 2-cell stage, whereas the monomeric nucleolar pool persists to the 8-cell stage, suggesting that polymeric nuclear actin may contribute to stemness. To test this idea, we overexpressed nuclear targeted actin constructs to alter nuclear actin polymerization states in the GSCs and early germ cells. Increasing monomeric nuclear actin, but not polymerizable nuclear actin, causes GSC loss that ultimately results in germline loss. This GSC loss is rescued by simultaneous overexpression of monomeric and polymerizable nuclear actin. Together these data reveal that GSC maintenance requires polymeric nuclear actin. This polymeric nuclear actin likely plays numerous roles in the GSCs, as increasing monomeric nuclear actin disrupts nuclear architecture causing nucleolar hypertrophy, distortion of the nuclear lamina, and heterochromatin reorganization; all factors critical for GSC maintenance and function. These data provide the first evidence that nuclear actin, and in particular, its ability to polymerize, are critical for stem cell function and tissue homeostasisin vivo. 
    more » « less
  5. Abstract Root hairs are single-cell protrusions that enable roots to optimize nutrient and water acquisition. These structures attain their tubular shapes by confining growth to the cell apex, a process called tip growth. The actin cytoskeleton and endomembrane systems are essential for tip growth; however, little is known about how these cellular components coordinate their activities during this process. Here, we show that SPIRRIG (SPI), a beige and Chediak Higashi domain-containing protein involved in membrane trafficking, and BRK1 and SCAR2, subunits of the WAVE/SCAR (W/SC) actin nucleating promoting complex, display polarized localizations in Arabidopsis thaliana root hairs during distinct developmental stages. SPI accumulates at the root hair apex via post-Golgi compartments and positively regulates tip growth by maintaining tip-focused vesicle secretion and filamentous-actin integrity. BRK1 and SCAR2 on the other hand, mark the root hair initiation domain to specify the position of root hair emergence. Consistent with the localization data, tip growth was reduced in spi and the position of root hair emergence was disrupted in brk1 and scar1234. BRK1 depletion coincided with SPI accumulation as root hairs transitioned from initiation to tip growth. Taken together, our work uncovers a role for SPI in facilitating actin-dependent root hair development in Arabidopsis through pathways that might intersect with W/SC. 
    more » « less