skip to main content


Title: Supramolecular organization and dynamics of mannosylated phosphatidylinositol lipids in the mycobacterial plasma membrane
Mycobacterium tuberculosis ( Mtb ) is the causative agent of tuberculosis (TB), a disease that claims ~1.6 million lives annually. The current treatment regime is long and expensive, and missed doses contribute to drug resistance. Therefore, development of new anti-TB drugs remains one of the highest public health priorities. Mtb has evolved a complex cell envelope that represents a formidable barrier to antibiotics. The Mtb cell envelop consists of four distinct layers enriched for Mtb specific lipids and glycans. Although the outer membrane, comprised of mycolic acid esters, has been extensively studied, less is known about the plasma membrane, which also plays a critical role in impacting antibiotic efficacy. The Mtb plasma membrane has a unique lipid composition, with mannosylated phosphatidylinositol lipids (phosphatidyl-myoinositol mannosides, PIMs) comprising more than 50% of the lipids. However, the role of PIMs in the structure and function of the membrane remains elusive. Here, we used multiscale molecular dynamics (MD) simulations to understand the structure-function relationship of the PIM lipid family and decipher how they self-organize to shape the biophysical properties of mycobacterial plasma membranes. We assess both symmetric and asymmetric assemblies of the Mtb plasma membrane and compare this with residue distributions of Mtb integral membrane protein structures. To further validate the model, we tested known anti-TB drugs and demonstrated that our models agree with experimental results. Thus, our work sheds new light on the organization of the mycobacterial plasma membrane. This paves the way for future studies on antibiotic development and understanding Mtb membrane protein function.  more » « less
Award ID(s):
2111728
NSF-PAR ID:
10426970
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
120
Issue:
5
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), remains the leading global cause of death from an infectious agent. Mycobacteria thrive within their host Mϕs and presently, there is no animal model that permits combined in vitro and in vivo study of mycobacteria-host Mϕ interactions. Mycobacterium marinum (Mm), which causes TB in aquatic vertebrates, has become a promising model for TB research, owing to its close genetic relatedness to Mtb and the availability of alternative, natural host aquatic animal models. Here, we adopted the Xenopus laevis frog-Mm surrogate infection model to study host Mϕ susceptibility and resistance to mycobacteria. Mϕ differentiation is regulated though the CSF-1 receptor (CSF-1R), which is activated by CSF-1 and the unrelated IL-34 cytokines. Using combined in vitro and in vivo approaches, we demonstrated that CSF-1-Mϕs exacerbate Mm infections, are more susceptible to mycobacterial entry and are less effective at killing this pathogen. By contrast, IL-34-Mϕs confer anti-Mm resistance in vivo, are less susceptible to Mm entry and more effectively eliminate internalized mycobacteria. Moreover, we showed that the human CSF-1- and IL-34-Mϕs are likewise, respectively, susceptible and resistant to mycobacteria, and that both frog and human CSF-1-Mϕs are more prone to the spread of mycobacteria and to being infected by Mm-laden Mϕs than the respective IL-34-Mϕ subsets. This work marks the first report describing the roles of these Mϕ subsets in mycobacterial disease and may well lead to the development of more targeted anti-Mtb approaches.

     
    more » « less
  2. Mycobacteria, including the human pathogen Mycobacterium tuberculosis , grow by inserting new cell wall material at their poles. This process and that of division are asymmetric, producing a phenotypically heterogeneous population of cells that respond non-uniformly to stress (Aldridge et al., 2012; Rego et al., 2017). Surprisingly, deletion of a single gene – lamA – leads to more symmetry, and to a population of cells that is more uniformly killed by antibiotics (Rego et al., 2017). How does LamA create asymmetry? Here, using a combination of quantitative time-lapse imaging, bacterial genetics, and lipid profiling, we find that LamA recruits essential proteins involved in cell wall synthesis to one side of the cell – the old pole. One of these proteins, MSMEG_0317, here renamed PgfA, was of unknown function. We show that PgfA is a periplasmic protein that interacts with MmpL3, an essential transporter that flips mycolic acids in the form of trehalose monomycolate (TMM), across the plasma membrane. PgfA interacts with a TMM analog suggesting a direct role in TMM transport. Yet our data point to a broader function as well, as cells with altered PgfA levels have differences in the abundance of other lipids and are differentially reliant on those lipids for survival. Overexpression of PgfA, but not MmpL3, restores growth at the old poles in cells missing lamA . Together, our results suggest that PgfA is a key determinant of polar growth and cell envelope composition in mycobacteria, and that the LamA-mediated recruitment of this protein to one side of the cell is a required step in the establishment of cellular asymmetry. 
    more » « less
  3. Cholesterol is an integral component of eukaryotic cell membranes and a key molecule in controlling membrane fluidity, organization, and other physicochemical parameters. It also plays a regulatory function in antibiotic drug resistance and the immune response of cells against viruses, by stabilizing the membrane against structural damage. While it is well understood that, structurally, cholesterol exhibits a densification effect on fluid lipid membranes, its effects on membrane bending rigidity are assumed to be nonuniversal; i.e., cholesterol stiffens saturated lipid membranes, but has no stiffening effect on membranes populated by unsaturated lipids, such as 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). This observation presents a clear challenge to structure–property relationships and to our understanding of cholesterol-mediated biological functions. Here, using a comprehensive approach—combining neutron spin-echo (NSE) spectroscopy, solid-state deuterium NMR (2H NMR) spectroscopy, and molecular dynamics (MD) simulations—we report that cholesterol locally increases the bending rigidity of DOPC membranes, similar to saturated membranes, by increasing the bilayer’s packing density. All three techniques, inherently sensitive to mesoscale bending fluctuations, show up to a threefold increase in effective bending rigidity with increasing cholesterol content approaching a mole fraction of 50%. Our observations are in good agreement with the known effects of cholesterol on the area-compressibility modulus and membrane structure, reaffirming membrane structure–property relationships. The current findings point to a scale-dependent manifestation of membrane properties, highlighting the need to reassess cholesterol’s role in controlling membrane bending rigidity over mesoscopic length and time scales of important biological functions, such as viral budding and lipid–protein interactions.

     
    more » « less
  4. Boshoff, Helena Ingrid (Ed.)
    Despite the existence of well-characterized, canonical mutations that confer high-level drug resistance to Mycobacterium tuberculosis (Mtb), there is evidence that drug resistance mechanisms are more complex than simple acquisition of such mutations. Recent studies have shown that Mtb can acquire non-canonical resistance-associated mutations that confer survival advantages in the presence of certain drugs, likely acting as stepping-stones for acquisition of high-level resistance. Rv2752c / rnj , encoding RNase J, is disproportionately mutated in drug-resistant clinical Mtb isolates. Here we show that deletion of rnj confers increased tolerance to lethal concentrations of several drugs. RNAseq revealed that RNase J affects expression of a subset of genes enriched for PE/PPE genes and stable RNAs and is key for proper 23S rRNA maturation. Gene expression differences implicated two sRNAs and ppe50-ppe51 as important contributors to the drug tolerance phenotype. In addition, we found that in the absence of RNase J, many short RNA fragments accumulate because they are degraded at slower rates. We show that the accumulated transcript fragments are targets of RNase J and are characterized by strong secondary structure and high G+C content, indicating that RNase J has a rate-limiting role in degradation of highly structured RNAs. Taken together, our results demonstrate that RNase J indirectly affects drug tolerance, as well as reveal the endogenous roles of RNase J in mycobacterial RNA metabolism. 
    more » « less
  5. Abstract The ability of Mycobacterium tuberculosis (Mtb) to adopt heterogeneous physiological states underlies its success in evading the immune system and tolerating antibiotic killing. Drug tolerant phenotypes are a major reason why the tuberculosis (TB) mortality rate is so high, with over 1.8 million deaths annually. To develop new TB therapeutics that better treat the infection (faster and more completely), a systems-level approach is needed to reveal the complexity of network-based adaptations of Mtb. Here, we report a new predictive model called PRIME ( P henotype of R egulatory influences I ntegrated with M etabolism and E nvironment) to uncover environment-specific vulnerabilities within the regulatory and metabolic networks of Mtb. Through extensive performance evaluations using genome-wide fitness screens, we demonstrate that PRIME makes mechanistically accurate predictions of context-specific vulnerabilities within the integrated regulatory and metabolic networks of Mtb, accurately rank-ordering targets for potentiating treatment with frontline drugs. 
    more » « less