skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Biochemical characterization of Mycobacterial RNA polymerases
ABSTRACT Tuberculosis is caused by the bacteriumMycobacterium tuberculosis(Mtb). While eukaryotic species employ several specialized RNA polymerases (Pols) to fulfill the RNA synthesis requirements of the cell, bacterial species use a single RNA polymerase (RNAP). To contribute to the foundational understanding of how Mtb and the related non-pathogenic mycobacterial species,Mycobacterium smegmatis(Msm), perform the essential function of RNA synthesis, we performed a series ofin vitrotranscription experiments to define the unique enzymatic properties of Mtb and Msm RNAPs. In this study, we characterize the mechanism of nucleotide addition used by these bacterial RNAPs with comparisons to previously characterized eukaryotic Pols I, II, and III. We show that Mtb RNAP and Msm RNAP demonstrate similar enzymatic properties and nucleotide addition kinetics to each other but diverge significantly from eukaryotic Pols. We also show that Mtb RNAP and Msm RNAP uniquely bind a nucleotide analog with significantly higher affinity than canonical nucleotides, in contrast to eukaryotic RNA polymerase II. This affinity for analogs may reveal a vulnerability for selective inhibition of the pathogenic bacterial enzyme.IMPORTANCETuberculosis, caused by the bacteriumMycobacterium tuberculosis(Mtb), remains a severe global health threat. The World Health Organization (WHO) has reported that tuberculosis is second only to COVID-19 as the most lethal infection worldwide, with more annual deaths than HIV and AIDS (WHO.int). The first-line treatment for tuberculosis, Rifampin (or Rifampicin), specifically targets the Mtb RNA polymerase. This drug has been used for decades, leading to increased numbers of multi-drug-resistant infections (Stephanie,et al). To effectively treat tuberculosis, there is an urgent need for new therapeutics that selectively target vulnerabilities of the bacteria and not the host. Characterization of the differences between Mtb enzymes and host enzymes is critical to inform these ongoing drug design efforts.  more » « less
Award ID(s):
2346165
PAR ID:
10612329
Author(s) / Creator(s):
; ; ;
Editor(s):
Champion, Patricia A
Publisher / Repository:
Journal of Bacteriology
Date Published:
Journal Name:
Journal of Bacteriology
Volume:
206
Issue:
10
ISSN:
0021-9193
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Shin, Sunny (Ed.)
    ABSTRACT Tuberculosis (TB) is notoriously difficult to treat, likely due to the complex host-pathogen interactions driven by pathogen heterogeneity. An understudied area of TB pathogenesis is host responses toMycobacterium tuberculosisbacteria (Mtb) that are limited in zinc ions. This distinct population resides in necrotic granulomas and sputum and could be the key player in tuberculosis pathogenicity. In this study, we tested the hypothesis that macrophages differentiate between Mtb grown under zinc limitation or in the standard zinc-replete medium. Using several macrophage infection models, such as murine RAW 264.7 and murine bone marrow-derived macrophages (BMDMs), as well as human THP-1-derived macrophages, we show that macrophages infected with zinc-limited Mtb have increased bacterial burden compared with macrophages infected with zinc-replete Mtb. We further demonstrate that macrophage infection with zinc-limited Mtb trigger higher production of reactive oxygen species (ROS) and cause more macrophage death. Furthermore, the increased ROS production is linked to the increased phagocytosis of zinc-limited Mtb, whereas cell death is not. Finally, transcriptional analysis of RAW 264.7 macrophages demonstrates that macrophages have more robust pro-inflammatory responses when infected with zinc-limited Mtb than zinc-replete Mtb. Together, our findings suggest that Mtb’s access to zinc affects their interaction with macrophages and that zinc-limited Mtb may be influencing TB progression. Therefore, zinc availability in bacterial growth medium should be considered in TB drug and vaccine developments. 
    more » « less
  2. Abstract Backtracking of RNA polymerase (RNAP) is an important pausing mechanism during DNA transcription that is part of the error correction process that enhances transcription fidelity. We model the backtracking mechanism of RNAP, which usually happens when the polymerase tries to incorporate a noncognate or ‘mismatched’ nucleotide triphosphate. Previous models have made simplifying assumptions such as neglecting the trailing polymerase behind the backtracking polymerase or assuming that the trailing polymerase is stationary. We derive exact analytic solutions of a stochastic model that includes locally interacting RNAPs by explicitly showing how a trailing RNAP influences the probability that an error is corrected or incorporated by the leading backtracking RNAP. We also provide two related methods for computing the mean times for error correction and incorporation given an initial local RNAP configuration. Using these results, we propose an effective interacting-RNAP lattice that can be readily simulated. 
    more » « less
  3. Boshoff, Helena Ingrid (Ed.)
    Despite the existence of well-characterized, canonical mutations that confer high-level drug resistance to Mycobacterium tuberculosis (Mtb), there is evidence that drug resistance mechanisms are more complex than simple acquisition of such mutations. Recent studies have shown that Mtb can acquire non-canonical resistance-associated mutations that confer survival advantages in the presence of certain drugs, likely acting as stepping-stones for acquisition of high-level resistance. Rv2752c / rnj , encoding RNase J, is disproportionately mutated in drug-resistant clinical Mtb isolates. Here we show that deletion of rnj confers increased tolerance to lethal concentrations of several drugs. RNAseq revealed that RNase J affects expression of a subset of genes enriched for PE/PPE genes and stable RNAs and is key for proper 23S rRNA maturation. Gene expression differences implicated two sRNAs and ppe50-ppe51 as important contributors to the drug tolerance phenotype. In addition, we found that in the absence of RNase J, many short RNA fragments accumulate because they are degraded at slower rates. We show that the accumulated transcript fragments are targets of RNase J and are characterized by strong secondary structure and high G+C content, indicating that RNase J has a rate-limiting role in degradation of highly structured RNAs. Taken together, our results demonstrate that RNase J indirectly affects drug tolerance, as well as reveal the endogenous roles of RNase J in mycobacterial RNA metabolism. 
    more » « less
  4. Cox, Michael M (Ed.)
    Mycobacterium tuberculosis (Mtb) depends on the bifunctional enzyme catalase-peroxidase (KatG) for survival within the host. KatG exhibits both catalase and peroxidase activities, serving distinct yet critical roles. While its peroxidase activity is essential for activating the frontline tuberculosis drug isoniazid, its catalase activity protects Mtb from oxidative stress. This bifunctional enzyme is equipped with a unique, protein-derived cofactor, methionine-tyrosine-tryptophan (MYW), which enables catalase activity to efficiently disproportionate hydrogen peroxide in phagocytes. Recent studies reveal that the MYW cofactor naturally exists in a hydroperoxylated form (MYW-OOH) when cell cultures are grown under ambient conditions. New findings highlight a dynamic regulation of KatG activity, wherein the modification of the protein cofactor is removable-from MYW-OOH to MYW-at body temperature or in the presence of micromolar concentrations of hydrogen peroxide. This reversible modification modulates KatG's dual activities: MYW-OOH inhibits catalase activity while enhancing peroxidase activity, demonstrating the chemical accessibility of the cofactor. Such duality positions KatG as a unique target for tuberculosis drug development. Therapeutic strategies that exploit cofactor modification could hold promise, particularly against drug-resistant strains with impaired peroxidase activity. By selectively inhibiting catalase activity, these approaches would render Mtb more vulnerable to oxidative stress while enhancing isoniazid activation-a double-edged strategy for combating tuberculosis. 
    more » « less
  5. Abstract Pseudouridimycin (PUM) is a microbially produced C‐nucleoside dipeptide that selectively targets the nucleotide addition site of bacterial RNA polymerase (RNAP) and that has a lower rate of spontaneous resistance emergence relative to current drugs that target RNAP. Despite its promising biological profile, PUM undergoes relatively rapid decomposition in buffered aqueous solutions. Here, we describe the synthesis, RNAP‐inhibitory activity, and antibacterial activity of chemically stabilized analogues of PUM. These analogues feature targeted modifications that mitigate guanidine‐mediated hydroxamate bond scission. A subset of analogues in which the central hydroxamate is replaced with amide or hydrazide isosteres retain the antibacterial activity of the natural product. 
    more » « less