skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Towards a Proactive Lightweight Serverless Edge Cloud for Internet-of-Things Applications
Edge cloud solutions that bring the cloud closer to the sensors can be very useful to meet the low latency requirements of many Internet-of-Things (IoT) applications. However, IoT traffic can also be intermittent, so running applications constantly can be wasteful. Therefore, having a serverless edge cloud that is responsive and provides low-latency features is a very attractive option for a resource and cost-efficient IoT application environment.In this paper, we discuss the key components needed to support IoT traffic in the serverless edge cloud and identify the critical challenges that make it difficult to directly use existing serverless solutions such as Knative, for IoT applications. These include overhead from heavyweight components for managing the overall system and software adaptors for communication protocol translation used in off-the-shelf serverless platforms that are designed for large-scale centralized clouds. The latency imposed by ‘cold start’ is a further deterrent.To address these challenges we redesign several components of the Knative serverless framework. We use a streamlined protocol adaptor to leverage the MQTT IoT protocol in our serverless framework for IoT event processing. We also create a novel, event-driven proxy based on the extended Berkeley Packet Filter (eBPF), to replace the regular heavyweight Knative queue proxy. Our preliminary experimental results show that the event-driven proxy is a suitable replacement for the queue proxy in an IoT serverless environment and results in lower CPU usage and a higher request throughput.  more » « less
Award ID(s):
1763929
PAR ID:
10426972
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2021 IEEE International Conference on Networking, Architecture and Storage (NAS)
Page Range / eLocation ID:
1 to 4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Serverless computing promises an efficient, low-cost compute capability in cloud environments. However, existing solutions, epitomized by open-source platforms such as Knative, include heavyweight components that undermine this goal of serverless computing. Additionally, such serverless platforms lack dataplane optimizations to achieve efficient, high-performance function chains that facilitate the popular microservices development paradigm. Their use of unnecessarily complex and duplicate capabilities for building function chains severely degrades performance. 'Cold-start' latency is another deterrent. We describe SPRIGHT, a lightweight, high-performance, responsive serverless framework. SPRIGHT exploits shared memory processing and dramatically improves the scalability of the dataplane by avoiding unnecessary protocol processing and serialization-deserialization overheads. SPRIGHT extensively leverages event-driven processing with the extended Berkeley Packet Filter (eBPF). We creatively use eBPF's socket message mechanism to support shared memory processing, with overheads being strictly load-proportional. Compared to constantly-running, polling-based DPDK, SPRIGHT achieves the same dataplane performance with 10× less CPU usage under realistic workloads. Additionally, eBPF benefits SPRIGHT, by replacing heavyweight serverless components, allowing us to keep functions 'warm' with negligible penalty. Our preliminary experimental results show that SPRIGHT achieves an order of magnitude improvement in throughput and latency compared to Knative, while substantially reducing CPU usage, and obviates the need for 'cold-start'. 
    more » « less
  2. Serverless computing promises an efficient, low-cost compute capability in cloud environments. However, existing solutions, epitomized by open-source platforms such as Knative, include heavyweight components that undermine this goal of serverless computing. Additionally, such serverless platforms lack dataplane optimizations to achieve efficient, high-performance function chains that facilitate the popular microservices development paradigm. Their use of unnecessarily complex and duplicate capabilities for building function chains severely degrades performance. ‘Cold-start’ latency is another deterrent. We describe SPRIGHT, a lightweight, high-performance, responsive serverless framework. SPRIGHT exploits shared memory processing and dramatically improves the scalability of the dataplane by avoiding unnecessary protocol processing and serialization-deserialization overheads. SPRIGHT extensively leverages event-driven processing with the extended Berkeley Packet Filter (eBPF). We creatively use eBPF’s socket message mechanism to support shared memory processing, with overheads being strictly load-proportional. Compared to constantly-running, polling-based DPDK, SPRIGHT achieves the same dataplane performance with 10× less CPU usage under realistic workloads. Additionally, eBPF benefits SPRIGHT, by replacing heavyweight serverless components, allowing us to keep functions ‘warm’ with negligible penalty. Our preliminary experimental results show that SPRIGHT achieves an order of magnitude improvement in throughput and latency compared to Knative, while substantially reducing CPU usage, and obviates the need for ‘cold-start’. 
    more » « less
  3. null (Ed.)
    Cloud computing has grown because of lowered costs due to economies of scale and multiplexing. Serverless computing exploits multiplexing in cloud computing however, for low latency required by IoT applications, the cloud should be moved nearer to the IoT device and the cold start problem should be addressed. Using a real-world dataset, we showed through implementation in an open-source cloud environment based on Knative that a serverless approach to manage IoT traffic is feasible, uses less resources than a serverfull approach and traffic prediction with prefetching can mitigate the cold start delay penalty. However applying the Knative framework directly to IoT traffic without considering the execution context gives unnecessary overhead. 
    more » « less
  4. Serverless computing is an emerging event-driven programming model that accelerates the development and deployment of scalable web services on cloud computing systems. Though widely integrated with the public cloud, serverless computing use is nascent for edge-based, IoT deployments. In this work, we design and develop STOIC (Serverless TeleOperable HybrId Cloud), an IoT application deployment and offloading system that extends the serverless model in three ways. First, STOIC adopts a dynamic feedback control mechanism to precisely predict latency and dispatch workloads uniformly across edge and cloud systems using a distributed serverless framework. Second, STOIC leverages hardware acceleration (e.g. GPU resources) for serverless function execution when available from the underlying cloud system. Third, STOIC can be configured in multiple ways to overcome deployment variability associated with public cloud use. Finally, we empirically evaluate STOIC using real-world machine learning applications and multi-tier IoT deployments (edge and cloud). We show that STOIC can be used for training image processing workloads (for object recognition) – once thought too resource intensive for edge deployments. We find that STOIC reduces overall execution time (response latency) and achieves placement accuracy that ranges from 92% to 97%. 
    more » « less
  5. Serverless computing platforms simplify development, deployment, and automated management of modular software functions. However, existing serverless platforms typically assume an over-provisioned cloud, making them a poor fit for Edge Computing environments where resources are scarce. In this paper we propose a redesigned serverless platform that comprehensively tackles the key challenges for serverless functions in a resource constrained Edge Cloud. Our Mu platform cleanly integrates the core resource management components of a serverless platform: autoscaling, load balancing, and placement. Each worker node in Mu transparently propagates metrics such as service rate and queue length in response headers, feeding this information to the load balancing system so that it can better route requests, and to our autoscaler to anticipate workload fluctuations and proactively meet SLOs. Data from the Autoscaler is then used by the placement engine to account for heterogeneity and fairness across competing functions, ensuring overall resource efficiency, and minimizing resource fragmentation. We implement our design as a set of extensions to the Knative serverless platform and demonstrate its improvements in terms of resource efficiency, fairness, and response time. Evaluating Mu, shows that it improves fairness by more than 2x over the default Kubernetes placement engine, improves 99th percentile response times by 62% through better load balancing, reduces SLO violations and resource consumption by pro-active and precise autoscaling. Mu reduces the average number of pods required by more than ~15% for a set of real Azure workloads. 
    more » « less