Abstract In Eastern boundary upwelling systems, such as the California Current System (CCS), seasonal upwelling brings low oxygen and low pH waters to the continental shelf, causing ocean acidification and hypoxia (OAH). The location, frequency, and intensity of OAH events is influenced by a combination of large‐scale climatic trends, seasonal changes, small‐scale circulation, and local human activities. Here, we use results from two 20‐year long submesoscale‐resolving simulations of the Northern and Southern U.S. West Coast (USWC) for the 1997–2017 period, to describe the characteristics and drivers of OAH events. These simulations reveal the emergence of hotspots in which seasonal declines in oxygen and pH are accompanied by localized short‐term extremes in OAH. While OAH hotspots show substantial seasonal variability, significant intra‐seasonal fluctuations occur, reflecting the interaction between low‐ and high‐frequency forcings that shape OAH events. The mechanisms behind the seasonal decreases in pH and oxygen vary along the USWC. While remineralization remains the dominant force causing these declines throughout the coast, physical transport partially offsets these effects in Southern and Central California, but contributes to seasonal oxygen loss and acidification on the Northern Coast. Critically, the seasonal decline is not sufficient to predict the occurrence and duration of OAH extremes. Locally enhanced biogeochemical rates, including shallow benthic remineralization and rapid wind‐driven transport, shape the spatial and temporal patterns of coastal OAH. 
                        more » 
                        « less   
                    
                            
                            Seasonal nearshore ocean acidification and deoxygenation in the Southern California Bight
                        
                    
    
            Abstract The California Current System experiences seasonal ocean acidification and hypoxia (OAH) owing to wind-driven upwelling, but little is known about the intensity, frequency, and depth distribution of OAH in the shallow nearshore environment. Here we present observations of OAH and dissolved inorganic carbon and nutrient parameters based on monthly transects from March 2017 to September 2018 extending from the surf zone to the ~ 40 m depth contour in La Jolla, California. Biologically concerning OAH conditions were observed at depths as shallow as 10 m and as close as 700 m to the shoreline. Below 20 m depth, 8% of observations were undersaturated with respect to aragonite, 28% of observations had a pH T less than 7.85, and 19% of observations were below the sublethal oxygen threshold of 157 µmol kg −1 . These observations raise important questions about the impacts of OAH on coastal organisms and ecosystems and how future intensified upwelling may exacerbate these conditions. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1756860
- PAR ID:
- 10426977
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The Oregon Slope Base Shallow Profiler Mooring is situated adjacent to the continental slope off the coast of Oregon at ~2,900 meters water depth. Here, ocean water properties are profoundly impacted by the California Current and internal waves. The coastal region of the Pacific Northwest is a classic wind-driven upwelling system where nutrient-rich deep waters rise to replace warmer surface waters, resulting in high marine productivity that attracts zooplankton, fish, and marine mammals. Near-bottom fauna are periodically negatively impacted by the flow of deep waters with very low oxygen concentrations (hypoxic events), and upwelling of corrosive, acidified waters onto the continental shelf. This two-legged mooring is attached to an electro-optical cable that supplies power and bandwidth and hosts a Shallow Profiler (SF01B), a 200m Platform (PC01B), and a Winch Controller (SC01B). The 200 m platform and Shallow Profiler both house scientific instrumentation, and the profiler is tethered to a mooring-mounted winch that allows it to travel across a fixed depth in the water column (20 m to 200 m below sea surface), determined by currents and wave conditions at the surface. The mooring is co-located with a Low-Power junction box that collects complementary data near the seafloor. When coupled with other Cabled Array and Endurance Array installations off the central Oregon coast, the Slope Base Shallow Profiler Mooring allows for measurements of a variety of coastal phenomena, including cross-shelf and along-shelf variability.more » « less
- 
            The Oregon Offshore Shallow Profiler Mooring is located on the Continental Slope, at approximately 580 meters water depth. By sampling in this area, the OOI seeks to gain better insight into upwelling dynamics of this system, including monitoring changes in productivity and hypoxia. This two-legged mooring is attached to an electro-optical cable that supplies power and bandwidth and hosts a Shallow Profiler (SF01B), a 200m Platform (PC01B), and a Winch Controller (SC01B). The 200 m platform and Shallow Profiler both house scientific instrumentation, and the profiler is tethered to a mooring-mounted winch that allows it to travel across a fixed depth in the water column (20 m to 200 m below sea surface). The mooring is co-located with a Benthic Experiment Package that collects complementary seafloor data.more » « less
- 
            Abstract This study examines the relationship between water depth and diatom assemblages from lake-sediment-surface samples at Kelly Lake, California. A total of 40 surface-sediment samples (integrated upper 5 cm) were taken at various depths within the small (~ 3.74 ha) 5.7 m-deep lake. Secchi depths, water temperature, pH, salinity, conductivity, and total dissolved solids were also measured. Some diatom species showed distinct association with depth (e.g.,Fragilaria crotonensis, Nitzschia semirobusta). The relationship between the complete diatom assemblages and water depth was analyzed and assessed by depth-cluster analysis, a one-way analysis of similarity, principal components analysis and canonical correspondence analysis. Statistically significant differences were found between the assemblages associated with shallow depth (0–1.25 m), mid-depth (1.25–3.75 m), and deep-water (3.75–5.2 m) locations. The relationship between diatom assemblages and lake depth allowed two transfer models to be developed using the Modern Analogue Technique and Weighted Averaging Partial Least Squares. These models were compared and assessed by residual scatter plots. The results indicate that diatom-inferred transfer models based on surface-sediment samples from a single, relatively small and shallow lake can be a useful tool for studying past hydroclimatic variability (e.g., lake depth) from similar lakes in California and other regions where the large number of lakes required for traditional transfer-function development may not exist.more » « less
- 
            Abstract Coastal upwelling of nutrients and metals along eastern boundary currents fuels some of the most biologically productive marine ecosystems. Although iron is a main driver of productivity in many of these regions, iron cycling and acquisition by microbes remain poorly constrained, in part due to the unknown composition of organic ligands that keep bioavailable iron in solution. In this study, we investigated organic ligand composition in discrete water samples collected across the highly productive California Coastal upwelling system. Siderophores were observed in distinct nutrient regimes at concentrations ranging from 1 pM to 18 pM. Near the shallow continental shelf, ferrioxamine B was observed in recently upwelled, high chlorophyll surface waters while synechobactins were identified within nepheloid layers at 60–90 m depth. In offshore waters characterized by intermediate chlorophyll, iron, and nitrate concentrations, we found amphibactins and an unknown siderophore with a molecular formula of C33H58O8N5Fe. Highest concentrations were measured in the photic zone, however, amphibactins were also found in waters as deep as 1500 m. The distribution of siderophores provides evidence for microbial iron deficiency across a range of nutrient regimes and indicates siderophore production and acquisition is an important strategy for biological iron uptake in iron limited coastal systems. Polydisperse humic ligands were also detected throughout the water column and were particularly abundant near the benthic boundary. Our results highlight the fine‐scale spatial heterogeneity of metal ligand composition in an upwelling environment and elucidate distinct sources that include biological production and the degradation of organic matter in suboxic waters.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    