skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Battling voice spoofing: a review, comparative analysis, and generalizability evaluation of state-of-the-art voice spoofing counter measures
With the advent of automated speaker verifcation (ASV) systems comes an equal and opposite development: malicious actors may seek to use voice spoofng attacks to fool those same systems. Various counter measures have been proposed to detect these spoofing attacks, but current oferings in this arena fall short of a unifed and generalized approach applicable in real-world scenarios. For this reason, defensive measures for ASV systems produced in the last 6-7 years need to be classifed, and qualitative and quantitative comparisons of state-of-the-art (SOTA) counter measures should be performed to assess the efectiveness of these systems against real-world attacks. Hence, in this work, we conduct a review of the literature on spoofng detection using hand-crafted features, deep learning, and end-to-end spoofng countermeasure solutions to detect logical access attacks, such as speech synthesis and voice conversion, and physical access attacks, i.e., replay attacks. Additionally, we review integrated and unifed solutions to voice spoofng evaluation and speaker verifcation, and adversarial and anti-forensic attacks on both voice counter measures and ASV systems. In an extensive experimental analysis, the limitations and challenges of existing spoofng counter measures are presented, the performance of these counter measures on several datasets is reported, and cross-corpus evaluations are performed, something that is nearly absent in the existing literature, in order to assess the generalizability of existing solutions. For the experiments, we employ the ASVspoof2019, ASVspoof2021, and VSDC datasets along with GMM, SVM, CNN, and CNN-GRU classifers. For reproducibility of the results, the code of the testbed can be found at our GitHub Repository (https://github.com/smileslab/Comparative-Analysis-Voice-Spoofing).  more » « less
Award ID(s):
1815724
PAR ID:
10427026
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Artificial Intelligence Review
ISSN:
0269-2821
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Jean-Jacques Rousseau; Bill Kapralos; Henrik I. Christensen; Michael Jenkin; Cheng-Lin (Ed.)
    Exponential growth in the use of smart speakers (SS) for the automation of homes, offices, and vehicles has brought a revolution of convenience to our lives. However, these SSs are susceptible to a variety of spoofing attacks, known/seen and unknown/unseen, created using cutting-edge AI generative algorithms. The realistic nature of these powerful attacks is capable of deceiving the automatic speaker verification (ASV) engines of these SSs, resulting in a huge potential for fraud using these devices. This vulnerability highlights the need for the development of effective countermeasures capable of the reliable detection of known and unknown spoofing attacks. This paper presents a novel end-to-end deep learning model, AEXANet, to effectively detect multiple types of physical- and logical-access attacks, both known and unknown. The proposed countermeasure has the ability to learn low-level cues by analyzing raw audio, utilizes a dense convolutional network for the propagation of diversified raw waveform features, and strengthens feature propagation. This system employs a maximum feature map activation function, which improves the performance against unseen spoofing attacks while making the model more efficient, enabling the model to be used for real-time applications. An extensive evaluation of our model was performed on the ASVspoof 2019 PA and LA datasets, along with TTS and VC samples, separately containing both seen and unseen attacks. Moreover, cross corpora evaluation using the ASVspoof 2019 and ASVspoof 2015 datasets was also performed. Experimental results show the reliability of our method for voice spoofing detection. 
    more » « less
  2. The prevalence of voice spoofing attacks in today’s digital world has become a critical security concern. Attackers employ various techniques, such as voice conversion (VC) and text-to-speech (TTS), to generate synthetic speech that imitates the victim’s voice and gain access to sensitive information. The recent advances in synthetic speech generation pose a significant threat to modern security systems, while traditional voice authentication methods are incapable of detecting them effectively. To address this issue, a novel solution for logical access (LA)-based synthetic speech detection is proposed in this paper. SpoTNet is an attention-based spoofing transformer network that includes crafted front-end spoofing features and deep attentive features retrieved using the developed logical spoofing transformer encoder (LSTE). The derived attentive features were then processed by the proposed multi-layer spoofing classifier to classify speech samples as bona fide or synthetic. In synthetic speeches produced by the TTS algorithm, the spectral characteristics of the synthetic speech are altered to match the target speaker’s formant frequencies, while in VC attacks, the temporal alignment of the speech segments is manipulated to preserve the target speaker’s prosodic features. By highlighting these observations, this paper targets the prosodic and phonetic-based crafted features, i.e., the Mel-spectrogram, spectral contrast, and spectral envelope, presenting an effective preprocessing pipeline proven to be effective in synthetic speech detection. The proposed solution achieved state-of-the-art performance against eight recent feature fusion methods with lower EER of 0.95% on the ASVspoof-LA dataset, demonstrating its potential to advance the field of speaker identification and improve speaker recognition systems. 
    more » « less
  3. With the advances in deep learning, speaker verification has achieved very high accuracy and is gaining popularity as a type of biometric authentication option in many scenes of our daily life, especially the growing market of web services. Compared to traditional passwords, “vocal passwords” are much more convenient as they relieve people from memorizing different passwords. However, new machine learning attacks are putting these voice authentication systems at risk. Without a strong security guarantee, attackers could access legitimate users’ web accounts by fooling the deep neural network (DNN) based voice recognition models. In this article, we demonstrate an easy-to-implement data poisoning attack to the voice authentication system, which cannot be captured effectively by existing defense mechanisms. Thus, we also propose a more robust defense method called Guardian, a convolutional neural network-based discriminator. The Guardian discriminator integrates a series of novel techniques including bias reduction, input augmentation, and ensemble learning. Our approach is able to distinguish about 95% of attacked accounts from normal accounts, which is much more effective than existing approaches with only 60% accuracy. 
    more » « less
  4. Voice biometrics is drawing increasing attention to user authentication on smart devices. However, voice biometrics is vulnerable to replay attacks, where adversaries try to spoof voice authentication systems using pre-recorded voice samples collected from genuine users. To this end, we propose VoiceGesture, a liveness detection solution for voice authentication on smart devices such as smartphones and smart speakers. With audio hardware advances on smart devices, VoiceGesture leverages built-in speaker and microphone pairs on smart devices as Doppler Radar to sense articulatory gestures for liveness detection during voice authentication. The experiments with 21 participants and different smart devices show that VoiceGesture achieves over 99% and around 98% detection accuracy for text-dependent and text-independent liveness detection, respectively. Moreover, VoiceGesture is robust to different device placements, low audio sampling frequency, and supports medium range liveness detection on smart speakers in various use scenarios, including smart homes and smart vehicles. 
    more » « less
  5. Voice conversion (VC) aims at altering a person's voice to make it sound similar to the voice of another person while preserving linguistic content. Existing methods suffer from a dilemma between content intelligibility and speaker similarity; i.e., methods with higher intelligibility usually have a lower speaker similarity, while methods with higher speaker similarity usually require plenty of target speaker voice data to achieve high intelligibility. In this work, we propose a novel method Phoneme Hallucinator that achieves the best of both worlds. Phoneme Hallucinator is a one-shot VC model; it adopts a novel model to hallucinate diversified and high-fidelity target speaker phonemes based just on a short target speaker voice (e.g. 3 seconds). The hallucinated phonemes are then exploited to perform neighbor-based voice conversion. Our model is a text-free, any-to-any VC model that requires no text annotations and supports conversion to any unseen speaker. Quantitative and qualitative evaluations show that Phoneme Hallucinator outperforms existing VC methods for both intelligibility and speaker similarity. 
    more » « less