skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ultralow Lattice Thermal Conductivity in the Aikinite Structure Family, Cu x Pb x Bi 2–x S 3 , and Thermoelectric Properties of Cu 0.14 Pb 0.14 Bi 1.86 S 3
Award ID(s):
2001156
PAR ID:
10427144
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
ACS Applied Energy Materials
Volume:
5
Issue:
11
ISSN:
2574-0962
Page Range / eLocation ID:
14222 to 14230
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A ternary derivative of Li 3 Bi with the composition Li 3– x – y In x Bi ( x  ≃ 0.14, y  ≃ 0.29) was produced by a mixed In+Bi flux approach. The crystal structure adopts the space group Fd \overline{3} m (No. 227), with a = 13.337 (4) Å, and can be viewed as a 2 × 2 × 2 superstructure of the parent Li 3 Bi phase, resulting from a partial ordering of Li and In in the tetrahedral voids of the Bi fcc packing. In addition to the Li/In substitutional disorder, partial occupation of some Li sites is observed. The Li deficiency develops to reduce the total electron count in the system, counteracting thereby the electron doping introduced by the In substitution. First-principles calculations confirm the electronic rationale of the observed disorder. 
    more » « less
  2. This work presents a systematic investigation of the electrochemical intercalation of aqueous copper cations into the Chevrel phase (CP) Mo6S8and its effect on the host's electronic and structural characteristics as a function of stoichiometry. 
    more » « less
  3. Localized surface plasmon resonance (LSPR) of Cu 2− x S nanorods is quenched during the initial Cu 2− x S/Cu 2− x Te core/shell stage of anion exchange then returns as Cu 2− x Te progresses into the nanorod. Phase change within the core accounts for this behaviour illustrating the complexity emergent from anion exchange. 
    more » « less