skip to main content


Title: Early Holocene Laurentide Ice Sheet Retreat Influenced Summer Atmospheric Circulation in Baffin Bay
Abstract

Changes in ice‐sheet size impact atmospheric circulation, a phenomenon documented by models but constrained by few paleoclimate records. We present sub‐centennial‐scale records of summer temperature and summer precipitation hydrogen isotope ratios (δ2H) spanning 12–7 ka from a lake on Baffin Island. In a transient model simulation, winds in this region were controlled by the relative strength of the high‐pressure systems and associated anticyclonic circulation over the retreating Greenland and Laurentide ice sheets. The correlation between summer temperature and precipitation δ2H proxy records changed from negative to positive at 9.8 ka. This correlation structure indicates a shift from alternating local and remote moisture, governed by the two ice‐sheet high‐pressure systems, to only remote moisture after 9.8 ka, governed by the strong Greenland high‐pressure system after the Laurentide Ice Sheet retreated. Such rapid atmospheric circulation changes may also occur in response to future, gradual ice‐sheet retreat.

 
more » « less
Award ID(s):
1948005 1947981 1349595 1504267 1652274 1737716
NSF-PAR ID:
10427148
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
50
Issue:
13
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Arctic precipitation is predicted to increase this century. Records of past precipitation seasonality provide baselines for a mechanistic understanding of the dynamics controlling Arctic precipitation. We present an approach to reconstruct Arctic precipitation seasonality using stable hydrogen isotopes (δ2H) of aquatic plant waxes in neighboring lakes with contrasting water residence times and present a case study of this approach in two lakes on western Greenland. Residence time calculations suggest that growing season lake water δ2H in one lake reflects summer precipitation δ2H, while the other reflects amount‐weighted annual precipitation δ2H and evaporative enrichment. Aquatic plant wax δ2H in the “summer lake” is relatively constant throughout the Holocene, perhaps reflecting competing effects of local summer warmth and increased distal moisture transport due to a strengthened latitudinal temperature gradient. In contrast, aquatic plant wax δ2H in the “mean annual lake” is 100‰2H depleted from 6 to 4 ka relative to the beginning and end of the record. Because there are relatively minor changes in summer precipitation δ2H, we interpret the 100‰2H depletion in mean annual precipitation to reflect an increase in winter precipitation amount, likely accompanied by changes in winter precipitation δ2H and decreased evaporative enrichment. Thus, unlike the “summer lake,” the “mean annual lake” records changes in winter precipitation. This dual‐lake approach may be applied to reconstruct past changes in precipitation seasonality at sites with strong precipitation isotope seasonality and minimal lake water evaporative enrichment.

     
    more » « less
  2. Abstract

    Increased precipitation in the Arctic is a robust feature across model simulations of the coming century, driven by intensification of meridional moisture transport and enhanced local evaporation in the absence of sea ice. These mechanisms are associated with distinct, seasonal, spatial, and, likely, precipitation isotope (δ2HPrecip) expressions. Historical observations of δ2HPrecipreveal a contrast in seasonality between southwestern and northwestern coastal Greenland: δ2HPrecipin northwestern Greenland varies in phase with local temperature, whereas δ2HPrecipin southwestern Greenland is decoupled from local temperature and exhibits little seasonal variation. We test the hypothesis that reduced δ2HPrecipseasonality in southwestern Greenland relative to northwestern Greenland results from dynamic moisture source variations, by diagnosing monthly average moisture sources to three sink regions (Kangilinnguit, Ilulissat, and Qaanaaq) using the Water Accounting Model‐2layers model. All domains demonstrate strong intra‐annual moisture source variations. Moisture to the southernmost region is sourced most remotely in summer and most locally in winter, associated with stronger cooling from the source in summer than winter, promoting more negative δ2HPrecipand counteracting local temperature‐driven seasonality. In comparison, moisture transport distance to the northernmost region is relatively constant, as local sea ice restricts northward migration of the winter moisture source. We simulate seasonal patterns in δ2HPrecipin a simple Rayleigh model, which confirm the importance of source temperature and starting isotopic compositions in determining δ2HPrecipfor these regions. δ2HPrecipsensitivity to moisture source variability suggests these coastal Arctic settings may yield paleoclimate records sensitive to the moisture transport processes predicted to amplify future precipitation.

     
    more » « less
  3. Abstract

    Since the last glacial period, North America has experienced dramatic changes in regional climate, including the collapse of ice sheets and changes in precipitation. We use clumped isotope (∆47) thermometry and carbonate δ18O measurements of glacial and deglacial pedogenic carbonates from the Palouse Loess to provide constraints on hydroclimate changes in the Pacific Northwest. We also employ analysis of climate model simulations to help us further provide constraints on the hydroclimate changes in the Pacific Northwest. The coldest clumped isotope soil temperaturesT(47) (13.5 ± 1.9°C to 17.1 ± 1.7°C) occurred ∼34,000–23,000 years ago. Using a soil‐to‐air temperature transfer function, we estimate Last Glacial Maximum (LGM) mean annual air temperatures of ∼−5.5°C and warmest average monthly temperatures (i.e., mean summer air temperatures) of ∼4.4°C. These data indicate a regional warming of 16.4 ± 2.6°C from the LGM to the modern temperatures of 10.9°C, which was about 2.5–3 times the global average. Proxy data provide locality constraints on the boundary of the cooler anticyclone induced by LGM ice sheets, and the warmer cyclone in the Eastern Pacific Ocean. Climate model analysis suggests regional amplification of temperature anomalies is due to the proximal location of the study area to the Laurentide Ice Sheet margin and the impact of the glacial anticyclone on the region, as well as local albedo. Isotope‐enabled model experiments indicate variations in water δ18O largely reflect atmospheric circulation changes and enhanced rainout upstream that brings more depleted vapor to the region during the LGM.

     
    more » « less
  4. Abstract

    The last deglaciation in northern Europe provides an opportunity to study the hydrologic component of abrupt climate shifts in a region with complex interactions between ice sheets and oceanic and atmospheric circulation. We use leaf wax hydrogen isotopes (δ2H) to reconstruct summer precipitation δ2H and aridity in southwestern Norway from 15.8 to 11.5 ka. We identify transitions to a more proximal moisture source before the ends of Heinrich Stadial 1 and the Younger Dryas, prior to local warming and increased primary productivity in both instances. We infer these changes in moisture delivery to southwestern Norway to be a response to northward shifts in the polar front caused by warm water intrusion into the North Atlantic, which preceded abrupt warming in the circum‐North Atlantic. These results suggest that moisture transport pathways shift northward as warm surface ocean water reaches higher latitudes in the North Atlantic.

     
    more » « less
  5. Abstract

    The Arctic hydrological cycle is predicted to intensify as the Arctic warms, due to increased poleward moisture transport during summer and increased evaporation from seas once ice‐covered during winter. Records of past Arctic precipitation seasonality are important because they provide a context for these ongoing changes. In some Arctic lakes, stable isotopes of oxygen and hydrogen (δ18O and δ2H, respectively) vary seasonally, due to seasonal changes in precipitation δ18O and δ2H. We reconstruct precipitation seasonality from Lake N3, a well‐dated lake sediment archive in Disko Bugt, western Greenland, by generating Holocene records of two proxies that are produced at different times of the year, and therefore record different lake water seasonal isotopic compositions. Aquatic plants synthesize waxes throughout the summer, and their δ2H reflects winter‐biased precipitation δ2H at Lake N3, whereas chironomids synthesize their head capsules between late summer and winter, and their δ18O reflects summer‐biased precipitation δ18O at Lake N3. During the middle Holocene at Lake N3, aquatic plant leaf wax was strongly2H‐depleted, while chironomid chitin was18O‐enriched. We guide interpretations of these records using sensitivity tests of a lake water and energy balance model, where we change precipitation amount and isotope seasonality inputs. The sensitivity tests suggest that the contrasting trends between proxies were likely caused by an increase in precipitation amount during all seasons and an increase in precipitation isotope seasonality, in addition to proxy‐specific mechanisms, highlighting the importance of understanding lake‐ and proxy‐specific systematics when interpreting records from sediment archives.

     
    more » « less