skip to main content


Title: Eu 5 Al 3 Sb 6 : Al 4 Tetrahedra Embedded in a Rock-Salt-Like Structure
Award ID(s):
2001156
PAR ID:
10427156
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Chemistry of Materials
Volume:
34
Issue:
11
ISSN:
0897-4756
Page Range / eLocation ID:
5009 to 5019
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Nickel (Ni)‐based superalloys for high‐temperature applications are often designed to form a continuous and slow‐growing oxide scale by adding Al and Cr and other beneficial elements. In the present work, the critical Al concentration in Ni–Al alloys needed to establish an α‐Al2O3scale in contrast to internal oxide formation is predicted as a function of temperature by means of the CALPHAD approach coupled with models in the literature, which account for the thermodynamics and kinetics of oxidation. The present thermodynamic remodeling of the Ni–O system results in a better agreement with experimental data of oxygen solubility in Ni at high temperatures. The oxygen solubility is combined with kinetic parameters to determine oxygen permeability in Ni, and the critical Al concentration needed to establish an α‐Al2O3scale at a given exposure temperature. Good agreement is found with available experimental data for both oxygen permeability and critical Al concentration, indicating the capacity of the CALPHAD approach to tailor oxidation resistance for materials of interest using thermodynamic and kinetic knowledge.

     
    more » « less
  2. Abstract

    The discovery of homodinuclear multiple bonds composed of Group 13 elements represents one of the most challenging frontiers in modern chemistry. A classical triple bond such as N≡N and HC≡CH contains one σ bond and two π bonds constructed from the p orbitals perpendicular to the σ bond. However, the traditional textbook triple bond between two Al atoms has remained elusive. Here we report an Al≡Al triple bond in the designer Na3Al2cluster predicted in silico, which was subsequently generated by pulsed arc discharge followed by mass spectrometry and photoelectron spectroscopy characterizations. Being effectively Al2−due to the electron donation from Na, the Al atoms in Na3Al2undergo a double electronic transmutation into Group 15 elements, thus the Al2−≡Al2−kernel mimics the P≡P and N≡N molecules. We anticipate this work will stimulate more endeavors in discovering materials using Al2−≡Al2−as a building block in the gas phase and in the solid state.

     
    more » « less
  3. Abstract

    The discovery of homodinuclear multiple bonds composed of Group 13 elements represents one of the most challenging frontiers in modern chemistry. A classical triple bond such as N≡N and HC≡CH contains one σ bond and two π bonds constructed from the p orbitals perpendicular to the σ bond. However, the traditional textbook triple bond between two Al atoms has remained elusive. Here we report an Al≡Al triple bond in the designer Na3Al2cluster predicted in silico, which was subsequently generated by pulsed arc discharge followed by mass spectrometry and photoelectron spectroscopy characterizations. Being effectively Al2−due to the electron donation from Na, the Al atoms in Na3Al2undergo a double electronic transmutation into Group 15 elements, thus the Al2−≡Al2−kernel mimics the P≡P and N≡N molecules. We anticipate this work will stimulate more endeavors in discovering materials using Al2−≡Al2−as a building block in the gas phase and in the solid state.

     
    more » « less
  4. X Ray Photoelectron Spectroscopy was used to measure valence band offsets for Al 2 O 3 deposited by Atomic Layer Deposition on α -(Al x Ga 1-x ) 2 O 3 alloys over a wide range of Al contents, x, from 0.26–0.74, corresponding to a bandgap range from 5.8–7 eV. These alloys were grown by Pulsed Laser Deposition. The band alignments were type I (nested) at x <0.5, with valence band offsets 0.13 eV for x = 0.26 and x = 0.46. At higher Al contents, the band alignment was a staggered alignment, with valence band offsets of − 0.07 eV for x = 0.58 and −0.17 for x = 0.74, ie. negative valence band offsets in both cases. The conduction band offsets are also small at these high Al contents, being only 0.07 eV at x = 0.74. The wide bandgap of the α -(Al x Ga 1-x ) 2 O 3 alloys makes it difficult to find dielectrics with nested band alignments over the entire composition range. 
    more » « less