skip to main content


Title: Transcriptional and post-translational regulation of plant autophagy
Abstract

In response to changing environmental conditions, plants activate cellular responses to enable them to adapt. One such response is autophagy, in which cellular components, for example proteins and organelles, are delivered to the vacuole for degradation. Autophagy is activated by a wide range of conditions, and the regulatory pathways controlling this activation are now being elucidated. However, key aspects of how these factors may function together to properly modulate autophagy in response to specific internal or external signals are yet to be discovered. In this review we discuss mechanisms for regulation of autophagy in response to environmental stress and disruptions in cell homeostasis. These pathways include post-translational modification of proteins required for autophagy activation and progression, control of protein stability of the autophagy machinery, and transcriptional regulation, resulting in changes in transcription of genes involved in autophagy. In particular, we highlight potential connections between the roles of key regulators and explore gaps in research, the filling of which can further our understanding of the autophagy regulatory network in plants.

 
more » « less
Award ID(s):
2040582
NSF-PAR ID:
10427248
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Experimental Botany
ISSN:
0022-0957
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Plants balance their competing requirements for growth and stress tolerance via a sophisticated regulatory circuitry that controls responses to the external environments. We have identified a plant-specific gene, COST1 ( constitutively stressed 1 ), that is required for normal plant growth but negatively regulates drought resistance by influencing the autophagy pathway. An Arabidopsis thaliana cost1 mutant has decreased growth and increased drought tolerance, together with constitutive autophagy and increased expression of drought-response genes, while overexpression of COST1 confers drought hypersensitivity and reduced autophagy. The COST1 protein is degraded upon plant dehydration, and this degradation is reduced upon treatment with inhibitors of the 26S proteasome or autophagy pathways. The drought resistance of a cost1 mutant is dependent on an active autophagy pathway, but independent of other known drought signaling pathways, indicating that COST1 acts through regulation of autophagy. In addition, COST1 colocalizes to autophagosomes with the autophagosome marker ATG8e and the autophagy adaptor NBR1, and affects the level of ATG8e protein through physical interaction with ATG8e, indicating a pivotal role in direct regulation of autophagy. We propose a model in which COST1 represses autophagy under optimal conditions, thus allowing plant growth. Under drought, COST1 is degraded, enabling activation of autophagy and suppression of growth to enhance drought tolerance. Our research places COST1 as an important regulator controlling the balance between growth and stress responses via the direct regulation of autophagy. 
    more » « less
  2. Hydrogen sulfide (H2S) serves as an important gaseous signaling molecule that is involved in intra- and intercellular signal transduction in plant–environment interactions. In plants, H2S is formed in sulfate/cysteine reduction pathways. The activation of endogenous H2S and its exogenous application has been found to be highly effective in ameliorating a wide variety of stress conditions in plants. The H2S interferes with the cellular redox regulatory network and prevents the degradation of proteins from oxidative stress via post-translational modifications (PTMs). H2S-mediated persulfidation allows the rapid response of proteins in signaling networks to environmental stimuli. In addition, regulatory crosstalk of H2S with other gaseous signals and plant growth regulators enable the activation of multiple signaling cascades that drive cellular adaptation. In this review, we summarize and discuss the current understanding of the molecular mechanisms of H2S-induced cellular adjustments and the interactions between H2S and various signaling pathways in plants, emphasizing the recent progress in our understanding of the effects of H2S on the PTMs of proteins. We also discuss future directions that would advance our understanding of H2S interactions to ultimately mitigate the impacts of environmental stresses in the plants. 
    more » « less
  3. The phytohormone cytokinin influences many aspects of plant growth and development, several of which also involve the cellular process of autophagy, including leaf senescence, nutrient remobilization, and developmental transitions. TheArabidopsistype-A response regulators (type-A ARR) are negative regulators of cytokinin signaling that are transcriptionally induced in response to cytokinin. Here, we describe a mechanistic link between cytokinin signaling and autophagy, demonstrating that plants modulate cytokinin sensitivity through autophagic regulation of type-A ARR proteins. Type-A ARR proteins were degraded by autophagy in an AUTOPHAGY-RELATED (ATG)5-dependent manner, and this degradation is promoted by phosphorylation on a conserved aspartate in the receiver domain of the type-A ARRs. EXO70D family members interacted with type-A ARR proteins, likely in a phosphorylation-dependent manner, and recruited them to autophagosomes via interaction of the EXO70D AIM with the core autophagy protein, ATG8. Consistently, loss-of-functionexo70D1,2,3mutants exhibited compromised targeting of type-A ARRs to autophagic vesicles, have elevated levels of type-A ARR proteins, and are hyposensitive to cytokinin. Disruption of both type-AARRsandEXO70D1,2,3compromised survival in carbon-deficient conditions, suggesting interaction between autophagy and cytokinin responsiveness in response to stress. These results indicate that the EXO70D proteins act as selective autophagy receptors to target type-A ARR cargos for autophagic degradation, demonstrating modulation of cytokinin signaling by selective autophagy.

     
    more » « less
  4. Sopory, SK (Ed.)
    As sessile organisms, plants are constantly exposed to a variety of environmental stresses that have detrimental effects on their growth and development, leading to major crop yield losses worldwide. To cope with adverse conditions plants have developed several adaptive mechanisms. A thorough understanding these mechanisms is critical to generate plants for the future. The heterotrimeric G-protein complex, composed of Gα, Gβ, and Gγ subunits, participates in regulation of multiple cellular signaling pathways and have multifaceted roles in regulating stress responses of plants. The complex has two functional entities, the GTP-bound Gα subunit and the Gβγ dimer, both of which by interacting with additional proteins can activate various signaling networks. The involvement of G-proteins has been shown in plants’ response to drought, salinity, extreme temperatures, heavy metal, ozone, and UV-B radiation. Due to their versatility and the number of processes modulated by them, G-proteins have emerged as key targets for generating stress tolerant crops. In this review, we provide an overview of the current knowledge of the roles of G proteins in abiotic stress tolerance, with examples from model plant Arabidopsis thaliana, where these processes are most widely studied and from additional agriculturally relevant crops, where their potential is realized for human usage. 
    more » « less
  5. Lunn, John (Ed.)
    Abstract The Snf1-related protein kinase 1 (SnRK1) is the plant homolog of the heterotrimeric AMP-activated protein kinase/sucrose non-fermenting 1 (AMPK/Snf1), which works as a major regulator of growth under nutrient-limiting conditions in eukaryotes. Along with its conserved role as a master regulator of sugar starvation responses, SnRK1 is involved in controlling the developmental plasticity and resilience under diverse environmental conditions in plants. In this review, through mining and analyzing the interactome and phosphoproteome data of SnRK1, we are highlighting its role in fundamental cellular processes such as gene regulation, protein synthesis, primary metabolism, protein trafficking, nutrient homeostasis, and autophagy. Along with the well-characterized molecular interaction in SnRK1 signaling, our analysis highlights several unchartered regions of SnRK1 signaling in plants such as its possible communication with chromatin remodelers, histone modifiers, and inositol phosphate signaling. We also discuss potential reciprocal interactions of SnRK1 signaling with other signaling pathways and cellular processes, which could be involved in maintaining flexibility and homeostasis under different environmental conditions. Overall, this review provides a comprehensive overview of the SnRK1 signaling network in plants and suggests many novel directions for future research. 
    more » « less