skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Interplay between Hydrogen Sulfide and Phytohormone Signaling Pathways under Challenging Environments
Hydrogen sulfide (H2S) serves as an important gaseous signaling molecule that is involved in intra- and intercellular signal transduction in plant–environment interactions. In plants, H2S is formed in sulfate/cysteine reduction pathways. The activation of endogenous H2S and its exogenous application has been found to be highly effective in ameliorating a wide variety of stress conditions in plants. The H2S interferes with the cellular redox regulatory network and prevents the degradation of proteins from oxidative stress via post-translational modifications (PTMs). H2S-mediated persulfidation allows the rapid response of proteins in signaling networks to environmental stimuli. In addition, regulatory crosstalk of H2S with other gaseous signals and plant growth regulators enable the activation of multiple signaling cascades that drive cellular adaptation. In this review, we summarize and discuss the current understanding of the molecular mechanisms of H2S-induced cellular adjustments and the interactions between H2S and various signaling pathways in plants, emphasizing the recent progress in our understanding of the effects of H2S on the PTMs of proteins. We also discuss future directions that would advance our understanding of H2S interactions to ultimately mitigate the impacts of environmental stresses in the plants.  more » « less
Award ID(s):
2207677
PAR ID:
10410622
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
International Journal of Molecular Sciences
Volume:
23
Issue:
8
ISSN:
1422-0067
Page Range / eLocation ID:
4272
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In response to changing environmental conditions, plants activate cellular responses to enable them to adapt. One such response is autophagy, in which cellular components, for example proteins and organelles, are delivered to the vacuole for degradation. Autophagy is activated by a wide range of conditions, and the regulatory pathways controlling this activation are now being elucidated. However, key aspects of how these factors may function together to properly modulate autophagy in response to specific internal or external signals are yet to be discovered. In this review we discuss mechanisms for regulation of autophagy in response to environmental stress and disruptions in cell homeostasis. These pathways include post-translational modification of proteins required for autophagy activation and progression, control of protein stability of the autophagy machinery, and transcriptional regulation, resulting in changes in transcription of genes involved in autophagy. In particular, we highlight potential connections between the roles of key regulators and explore gaps in research, the filling of which can further our understanding of the autophagy regulatory network in plants. 
    more » « less
  2. Sopory, SK (Ed.)
    As sessile organisms, plants are constantly exposed to a variety of environmental stresses that have detrimental effects on their growth and development, leading to major crop yield losses worldwide. To cope with adverse conditions plants have developed several adaptive mechanisms. A thorough understanding these mechanisms is critical to generate plants for the future. The heterotrimeric G-protein complex, composed of Gα, Gβ, and Gγ subunits, participates in regulation of multiple cellular signaling pathways and have multifaceted roles in regulating stress responses of plants. The complex has two functional entities, the GTP-bound Gα subunit and the Gβγ dimer, both of which by interacting with additional proteins can activate various signaling networks. The involvement of G-proteins has been shown in plants’ response to drought, salinity, extreme temperatures, heavy metal, ozone, and UV-B radiation. Due to their versatility and the number of processes modulated by them, G-proteins have emerged as key targets for generating stress tolerant crops. In this review, we provide an overview of the current knowledge of the roles of G proteins in abiotic stress tolerance, with examples from model plant Arabidopsis thaliana, where these processes are most widely studied and from additional agriculturally relevant crops, where their potential is realized for human usage. 
    more » « less
  3. Heterotrimeric GTP-binding proteins are key regulators of a multitude of signaling pathways in all eukaryotes. Although the core G-protein components and their basic biochemistries are broadly conserved throughout evolution, the regulatory mechanisms of G proteins seem to have been rewired in plants to meet specific needs. These proteins are currently the focus of intense research in plants due to their involvement in many agronomically important traits, such as seed yield, organ size regulation, biotic and abiotic stress responses, symbiosis, and nitrogen use efficiency. The availability of massive sequence information from a variety of plant species, extensive biochemical data generated over decades, and impressive genetic resources for plant G proteins have made it possible to examine their role, unique properties, and novel regulation. This review focuses on some recent advances in our understanding of the mechanistic details of this critical signaling pathway to enable the precise manipulation and generation of plants to meet future needs. 
    more » « less
  4. Abstract RAF-like kinases, members of the mitogen-activated protein kinase kinase kinase (MAPKKK) family, are central integrators of external and internal signals in plant stress responses and growth regulation. These kinases mediate signaling through multiple hormone pathways, including abscisic acid-dependent and -independent pathways, ethylene signaling, and rapid auxin responses. Unlike typical MAPKKKs that function through kinase cascades, RAF-like kinases primarily employ direct phosphorylation of downstream targets and dynamic subcellular localization to mediate specific physiological responses. Here, we review the emerging roles of RAF-like kinases in Arabidopsis thaliana, highlighting their integrative functions in hormone signaling, stress responses, and growth control. The complex interplay between different RAF-like kinase subgroups and their diverse cellular targets underscores the intricate regulatory mechanisms plants have evolved to coordinate environmental responses with development. 
    more » « less
  5. Lunn, John (Ed.)
    Abstract The Snf1-related protein kinase 1 (SnRK1) is the plant homolog of the heterotrimeric AMP-activated protein kinase/sucrose non-fermenting 1 (AMPK/Snf1), which works as a major regulator of growth under nutrient-limiting conditions in eukaryotes. Along with its conserved role as a master regulator of sugar starvation responses, SnRK1 is involved in controlling the developmental plasticity and resilience under diverse environmental conditions in plants. In this review, through mining and analyzing the interactome and phosphoproteome data of SnRK1, we are highlighting its role in fundamental cellular processes such as gene regulation, protein synthesis, primary metabolism, protein trafficking, nutrient homeostasis, and autophagy. Along with the well-characterized molecular interaction in SnRK1 signaling, our analysis highlights several unchartered regions of SnRK1 signaling in plants such as its possible communication with chromatin remodelers, histone modifiers, and inositol phosphate signaling. We also discuss potential reciprocal interactions of SnRK1 signaling with other signaling pathways and cellular processes, which could be involved in maintaining flexibility and homeostasis under different environmental conditions. Overall, this review provides a comprehensive overview of the SnRK1 signaling network in plants and suggests many novel directions for future research. 
    more » « less