Microstructure-sensitive materials design has become popular among materials engineering researchers in the last decade because it allows the control of material performance through the design of microstructures. In this study, the microstructure is defined by an orientation distribution function. A physics-informed machine learning approach is integrated into microstructure design to improve the accuracy, computational efficiency, and explainability of microstructure-sensitive design. When data generation is costly and numerical models need to follow certain physical laws, machine learning models that are domain-aware perform more efficiently than conventional machine learning models. Therefore, a new paradigm called the physics-informed neural network (PINN) is introduced in the literature. This study applies the PINN to microstructure-sensitive modeling and inverse design to explore the material behavior under deformation processing. In particular, we demonstrate the application of PINN to small-data problems driven by a crystal plasticity model that needs to satisfy the physics-based design constraints of the microstructural orientation space. For the first problem, we predict the microstructural texture evolution of copper during a tensile deformation process as a function of initial texturing and strain rate. The second problem aims to calibrate the crystal plasticity parameters of the Ti-7Al alloy by solving an inverse design problem to match the PINN-predicted final texture prediction and the experimental data.
more »
« less
Ensemble physics informed neural networks: A framework to improve inverse transport modeling in heterogeneous domains
Modeling fluid flow and transport in heterogeneous systems is often challenged by unknown parameters that vary in space. In inverse modeling, measurement data are used to estimate these parameters. Due to the spatial variability of these unknown parameters in heterogeneous systems (e.g., permeability or diffusivity), the inverse problem is ill-posed and infinite solutions are possible. Physics-informed neural networks (PINN) have become a popular approach for solving inverse problems. However, in inverse problems in heterogeneous systems, PINN can be sensitive to hyperparameters and can produce unrealistic patterns. Motivated by the concept of ensemble learning and variance reduction in machine learning, we propose an ensemble PINN (ePINN) approach where an ensemble of parallel neural networks is used and each sub-network is initialized with a meaningful pattern of the unknown parameter. Subsequently, these parallel networks provide a basis that is fed into a main neural network that is trained using PINN. It is shown that an appropriately selected set of patterns can guide PINN in producing more realistic results that are relevant to the problem of interest. To assess the accuracy of this approach, inverse transport problems involving unknown heat conductivity, porous media permeability, and velocity vector fields were studied. The proposed ePINN approach was shown to increase the accuracy in inverse problems and mitigate the challenges associated with non-uniqueness.
more »
« less
- PAR ID:
- 10427293
- Date Published:
- Journal Name:
- Physics of Fluids
- Volume:
- 35
- Issue:
- 5
- ISSN:
- 1070-6631
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Microstructure-sensitive material design has become popular among materials engineering researchers in the last decade because it allows the control of material performance through the design of microstructures. In this study, the microstructure is defined by an orientation distribution function (ODF). A physics-informed machine learning approach is integrated into microstructure design to improve the accuracy, computational efficiency, and explainability of microstructure-sensitive design. When data generation is costly and numerical models need to follow certain physical laws, machine learning models that are domain-aware perform more efficiently than conventional machine learning models. Therefore, a new paradigm called Physics-Informed Neural Network (PINN) is introduced in the literature. This study applies the PINN to microstructure-sensitive modeling and inverse design to explore the material behavior under deformation processing. In particular, we demonstrate the application of PINN to small-data problems driven by a crystal plasticity model that needs to satisfy the physics-based design constraints of the microstructural orientation space. For the first problem, we predict the microstructural texture evolution of Copper during a tensile deformation process as a function of initial texturing and strain rate. The second problem aims to calibrate the crystal plasticity parameters of Ti-7Al alloy by solving an inverse design problem to match PINN-predicted final texture prediction and the experimental data.more » « less
-
Battery lifetime and reliability depend on accurate state-of-health (SOH) estimation, while complex degradation mechanisms and varying operating conditions strengthen this challenge. This study presents two physics-informed neural network (PINN) configurations, PINN-Parallel, and PINN-Series, designed to improve SOH prediction by combining an equivalent circuit model (ECM) with a long short-term memory (LSTM) network. PINN-Parallel process input data through parallel ECM and LSTM modules and combine their outputs for SOH estimation. On the other hand, the PINN-Series uses a sequential approach that feeds ECM-derived parameters into the LSTM network to supplement temporal data analysis with physics information. Both models utilize easily accessible voltage, current, and temperature data that match realistic battery monitoring constraints. Experimental evaluations show that PINN-Series outperforms the PINN-Parallel and the baseline LSTM model in accuracy and robustness. It also adapts well to different input conditions. This demonstrates that the simulated battery dynamic states from ECM increase the LSTM's ability to capture degradation patterns and improve the model's ability to explain complex battery behavior. However, the trade-off between the robustness and training efficiency of PINNs is also discussed. The research findings show the potential of PINN models (particularly the PINN-Series) in advancing battery management systems, but the required computational resources need to be considered.more » « less
-
Abstract Battery lifetime and reliability depend on accurate state-of-health (SOH) estimation, while complex degradation mechanisms and varying operating conditions strengthen this challenge. This study presents two physics-informed neural network (PINN) configurations, PINN-parallel and PINN-series, designed to improve SOH prediction by combining an equivalent circuit model (ECM) with a long short-term memory (LSTM) network. PINN-parallel process inputs data through parallel ECM and LSTM modules and combines their outputs for SOH estimation. On the other hand, the PINN-series uses a sequential approach that feeds ECM-derived parameters into the LSTM network to supplement temporal data analysis with physics information. Both models utilize easily accessible voltage, current, and temperature data that match realistic battery monitoring constraints. Experimental evaluations show that the PINN-series outperforms the PINN-parallel and the baseline LSTM model in accuracy and robustness. It also adapts well to different input conditions. This demonstrates that the simulated battery dynamic states from ECM increase the LSTM's ability to capture degradation patterns and improve the model's ability to explain complex battery behavior. However, a trade-off between the robustness and training efficiency of PINNs is identified. The research outcomes show the potential of PINN models (particularly the PINN-series) in advancing battery management systems, although they require considerable computational resources.more » « less
-
Understanding thermal stress evolution in metal additive manufacturing (AM) is crucial for producing high-quality components. Recent advancements in machine learning (ML) have shown great potential for modeling complex multiphysics problems in metal AM. While physics-based simulations face the challenge of high computational costs, conventional data-driven ML models require large, labeled training datasets to achieve accurate predictions. Unfortunately, generating large datasets for ML model training through time-consuming experiments or high-fidelity simulations is highly expensive in metal AM. To address these challenges, this study introduces a physics-informed neural network (PINN) framework that incorporates governing physical laws into deep neural networks (NNs) to predict temperature and thermal stress evolution during the laser metal deposition (LMD) process. The study also discusses enhanced accuracy and efficiency of the PINN model when supplemented with small simulation data. Furthermore, it highlights the PINN transferability, enabling fast predictions with a set of new process parameters using a pre-trained PINN model as an online soft sensor, significantly reducing computation time compared to physics-based numerical models while maintaining accuracy.more » « less
An official website of the United States government

