skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Distal scaffold flexibility accelerates ligand substitution kinetics in manganese( i ) tricarbonyls: flexible thianthrene versus rigid anthracene scaffolds
This work investigates the effect of molecular flexibility on fundamental ligand substitution kinetics in a pair of manganese( i ) carbonyls supported by scaffold-based ligands. In previous work, we reported that the planar and rigid, anthracene-based scaffold with two pyridine ‘arms’ ( Anth-py 2 , 2) serves as a bidentate, cis donor set, akin to a strained bipyridine (bpy). In the present work, we have installed a more flexible and dynamic scaffold in the form of thianthrene ( Thianth-py 2 , 1), wherein the scaffold in the free ligand exhibits a ∼130° dihedral angle in the solid state. Thianth-py 2 also exhibits greater flexibility (molecular motion) in solution compared with Anth-py 2 , as evidenced by longer 1 H NMR T 1 times Thianthy-py 2 ( T 1 = 2.97 s) versus Anth-py 2 ( T 1 = 1.91 s). Despite the exchange of rigid Anth-py2 for flexible Thianth-py2 in the complexes [( Anth-py 2 )Mn(CO) 3 Br] (4) and [( Thianth-py 2 )Mn(CO) 3 Br] (3), respectively, nearly identical electronic structures and electron densities were observed at the Mn center: the IR of 3 exhibits features at 2026, 1938 and 1900 cm −1 , nearly identical to the features of the anthracene-based congener (4) at 2027, 1936 and 1888 cm −1 . Most importantly, we assessed the effect of ligand-scaffold flexibility on reactivity and measured the rates of an elementary ligand substitution reaction. For ease of IR study, the corresponding halide-abstracted, nitrile-bound (PhCN) cations [( Thianth-py 2 )Mn(CO) 3 (PhCN)](BF 4 ) (6) and [( Anth-py 2 )Mn(CO) 3 (PhCN)](BF 4 ) (8) were generated in situ , and the PhCN → Br – back-reaction was monitored. The more flexible 3 (thianth-based) exhibited ∼3–4× faster ligand substitution kinetics ( k 25 C = 22 × 10 −2 min −1 , k 0 C = 43 × 10 −3 min −1 ) than the rigid analogue 4 (anth-based: ( k 25 C = 6.0 × 10 −2 min −1 , k 0 C = 9.0 × 10 −3 min −1 ) on all counts. Constrained angle DFT calculations revealed that despite large changes in the thianthrene scaffold dihedral angle, the bond metrics of 3 about the metal center remain unchanged; i.e. the ‘flapping’ motion is strictly a second coordination sphere effect. These results suggest that the local environment of molecular flexibility plays a key role in determining reactivity at the metal center, which has essential implications for understanding the reactivity of organometallic catalysts and metalloenzyme active sites. We propose that this molecular flexibility component of reactivity can be considered a thematic ‘third coordination sphere’ that dictates metal structure and function.  more » « less
Award ID(s):
2109175
PAR ID:
10427416
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Dalton Transactions
Volume:
52
Issue:
13
ISSN:
1477-9226
Page Range / eLocation ID:
4028 to 4037
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The reactivity of the novel Re( i ) catalyst [Re( C12 Anth-py 2 )(CO) 3 Br] is modulated by its interactions with the covalent organic framework (COF) TFB-BD. The complex catalyzes either reductive etherification, oxidative esterification, or transfer hydrogenation depending on its local environment (embedded in TFB-BD, in homogeneous solution or co-incubated with TFB-BD, respectively). The results highlight that COFs can drastically modulate the reactivity of homogeneous catalysts. 
    more » « less
  2. In this work, forcefield flexibility parameters were constructed and validated for more than 100 metal-organic frameworks (MOFs). We used atom typing to identify bond types, angle types, and dihedral types associated with bond stretches, angle bends, dihedral torsions, and other flexibility interactions. Our work used Manz’s angle-bending and dihedral-torsion model potentials. For a crystal structure containing Natoms in its unit cell, the number of independent flexibility interactions is 3(Natoms – 1). Because the number of bonds, angles, and dihedrals is normally much larger than 3(Natoms – 1), these internal coordinates are redundant. To reduce (but not eliminate) this redundancy, our protocol prunes dihedral types in a way that preserves symmetry equivalency. Next, each dihedral type is classified as non-rotatable, hindered, rotatable, or linear. We introduce a smart selection method that identifies which particular torsion modes are important for each rotatable dihedral type. Then, we computed the force constants for all flexibility interactions together via LASSO regression (i.e., regularized linear least-squares fitting) of the training dataset. LASSO automatically identifies and removes unimportant forcefield interactions. For each MOF, the reference dataset was quantum-mechanically-computed in VASP via DFT with dispersion and included: (i) finite-displacement calculations along every independent atom translation mode, (ii) geometries randomly sampled via ab initio molecular dynamics (AIMD), (iii) the optimized ground-state geometry using experimental lattice parameters, and (iv) rigid torsion scans for each rotatable dihedral type. After training, the flexibility model was validated across geometries that were not part of the training dataset. For each MOF, we computed the goodness of fit (R-squared value) and the root-mean-squared error (RMSE) separately for the training and validation datasets. We compared flexibility models with and without bond-bond cross terms. Even without cross terms, the model yielded R-squared values of 0.910 (avg across all MOFs) ± 0.018 (st. dev.) for atom-in-material forces in the validation datasets. Our SAVESTEPS protocol should find widespread applications to parameterize flexible forcefields for material datasets. We performed molecular dynamics simulations using these flexibility parameters to compute heat capacities and thermal expansion coefficients for two MOFs. 
    more » « less
  3. Herein we report heteroleptic Co( ii ) diimine complexes [Co(H 2 bip) 2 Cl 2 ] ( 1 ), [Co(H 2 bip) 2 Br 2 ] ( 2 ), [Co(H 2 bip) 3 ]Br 2 ·1MeOH ( 3 ) and [Co(H 2 bip) 2 (Me 2 bpy)]Br 2 ·(MeCN) 0.5 ·(H 2 O) 0.25 ( 4 ) (H 2 bip = 2,2′-bi-1,4,5,6-tetrahydropyrimidine, bpy = 2,2′-dipyridyl, Me 2 bpy = 4,4′-Me-2,2′-dipyridyl), purposefully prepared to enable a systematic study of magnetic property changes arising from the increase of overall ligand field from σ/π-donor chlorido ( 1 ) to π-acceptor 4,4′Me-2,2′bpy ( 4 ). The presence of axial and rhombic anisotropy ( D and E ) of these compounds is sufficient to allow 1–4 to show field-induced slow relaxation of magnetization. Interestingly, we found as the effective ligand field is increased in the series, rhombicity ( E / D ) decreases, and the magnetic relaxation profile changes significantly, where relaxation of magnetization at a specific temperature becomes gradually faster. We performed mechanistic analyses of the temperature dependence of magnetic relaxation times considering Orbach relaxation processes, Raman-like relaxation and quantum tunnelling of magnetization (QTM). The effective energy barrier of the Orbach relaxation process ( U eff ) is largest in compound 1 (19.2 cm −1 ) and gradually decreases in the order 1 > 2 > 3 > 4 giving a minimum value in compound 4 (8.3 cm −1 ), where the Raman-like mechanism showed the possibility of different types of phonon activity below and above ∼2.5 K. As a precursor of 1 , the tetrahedral complex [Co(H 2 bip)Cl 2 ] ( 1a ) was also synthesized and structurally and magnetically characterized: this compound exhibits slow relaxation of magnetization under an applied dc field (1800 Oe) with a record slow relaxation time of 3.39 s at 1.8 K. 
    more » « less
  4. null (Ed.)
    4,5-diazafluorene (daf) and 9,9’-dimethyl-4,5-diazafluorene (Me2daf) are structurally similar to the important ligand 2,2’-bipyridine (bpy), but significantly less is known about the redox and spectroscopic properties of metal complexes containing Me2daf as a ligand than those containing bpy. New complexes Mn(CO)3Br(daf) (2), Mn(CO)3Br(Me2daf) (3), and [Ru(Me2daf)3](PF6)2 (5) have been prepared and fully characterized to understand the influence of the Me2daf framework on their chemical and electrochemical properties. Structural data for 2, 3, and 5 from single-crystal X-ray diffraction analysis reveal a distinctive widening of the daf and Me2daf chelate angles in comparison to the analogous Mn(CO)3(bpy)Br (1) and [Ru(bpy)3]2+ (4) complexes. Electronic absorption data for these complexes confirm the electronic similarity of daf, Me2daf, and bpy, as spectra are dominated in each case by metal-to-ligand charge transfer bands in the visible region. However, the electrochemical properties of 2, 3, and 5 reveal that the redox-active Me2daf framework in 3 and 5 undergoes reduction at a slightly more negative potential than that of bpy in 1 and 4. Taken together, the results indicate that Me2daf could be useful for preparation of a variety of new redox-active compounds, as it retains the useful redox-active nature of bpy but lacks the acidic, benzylic C–H bonds that can induce secondary reactivity in complexes bearing daf. 
    more » « less
  5. Three routes are explored to the title halide/cyanide complexes trans -Fe(CO)(NO)(X)(P((CH 2 ) 14 ) 3 P) ( 9c-X ; X = Cl/Br/I/CN), the Fe(CO)(NO)(X) moieties of which can rotate within the diphosphine cages (Δ H ‡ /Δ S ‡ (kcal mol −1 /eu −1 ) 5.9/−20.4 and 7.4/−23.9 for 9c-Cl and 9c-I from variable temperature 13 C NMR spectra). First, reactions of the known cationic complex trans -[Fe(CO) 2 (NO)(P((CH 2 ) 14 ) 3 P)] + BF 4 − and Bu 4 N + X − give 9c-Cl /- Br /- I /- CN (75–83%). Second, reactions of the acyclic complexes trans -Fe(CO)(NO)(X)(P((CH 2 ) m CHCH 2 ) 3 ) 2 and Grubbs’ catalyst afford the tris(cycloalkenes) trans -Fe(CO)(NO)(X)(P((CH 2 ) m CHCH(CH 2 ) m ) 3 P) ( m /X = 6/Cl,Br,I,CN, 7/Cl,Br, 8/Cl,Br) as mixtures of Z / E isomers (24–41%). Third, similar reactions of trans -[Fe(CO) 2 (NO)(P((CH 2 ) m CHCH 2 ) 3 ) 2 ] + BF 4 − and Grubbs’ catalyst afford crude trans -[Fe(CO) 2 (NO)P((CH 2 ) m CHCH(CH 2 ) m ) 3 P)] + BF 4 − ( m = 6, 8). However, the CC hydrogenations required to consummate routes 2 and 3 are problematic. Crystal structures of 9c-Cl /- Br /- CN are determined. Although the CO/NO/X ligands are disordered, the void space within the diphosphine cages is analyzed in terms of horizontal and vertical constraints upon Fe(CO)(NO)(X) rotation and the NMR data. The molecules pack in identical motifs with parallel P–Fe–P axes, and without intermolecular impediments to rotation in the solid state. 
    more » « less