skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effect of Channel Roughness on Micro-Droplet Distribution in Internal Minimum Quantity Lubrication
This research studied the effect of channel roughness on micro-droplet distributions in internal minimum quantity lubrication for effective machining. Mixtures of different oils and air were flown though internal channels with simulated different roughness: as fabricated, partially threaded, and fully threaded. The airborne droplets were collected, analyzed, and compared with simulated results by computational fluid dynamics. For low-viscous lubricant, the rough channel surface helped to break large droplets in the boundary layer into smaller droplets and reintroduce them into the main downstream flow. The opposite trend was found for the higher viscous lubricant. The study also performed chemical etching to roughen selected surfaces of carbide cutting tools. The synergy of hand and ultrasonic agitation successfully roughened a carbide surface within twelve minutes. Scanning electron microscopy examination showed deep etching that removed all grinding marks on a WC–Co cutting tool surface.  more » « less
Award ID(s):
1760985
PAR ID:
10427452
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Dynamics
Volume:
2
Issue:
4
ISSN:
2673-8716
Page Range / eLocation ID:
336 to 355
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This study characterized airborne microdroplet diameters and size distribution from two commercially available lubricants A and B for internal minimum quantity lubrication (MQL). The effects of air pressure, oil channel size, physical properties of lubricants on the resultant microdroplets and through-tool MQL drilling performance were studied. Airborne microdroplet diameters were highly sensitive to the coolant channel sizes and air pressure. Cluster method was used to divide microdroplets into smaller clusters for comparison. Experimental data show that the average airborne microdroplet of lubricant B was larger than that of lubricant A at different air pressures and channel sizes. The contact angle of lubricant A was at least 10° less than that of lubricant B when depositing on glass or aluminium. High-speed imaging showed the tendency of more viscous lubricant B sticking to the drill tip, and higher pressure and longer time was required to atomize this viscous oil. Built-up-edges were less significant when drilling A380 aluminium with lubricant A. Due to high machinability of A380 aluminium, variation of hole diameter and hole cylindricity were minimal when drilling with different lubricants. Insignificant improvement in hole quality was observed when drilling with excessive amount of MQL lubricants or high concentration of lubricant C in flood coolant. 
    more » « less
  2. Abstract Through-tool minimum quantity lubrication (MQL) drilling has been used in industry for decades, but little information is available on the coolant channel design and the effect on fluid distribution due to the inability of in-situ measurement. This study utilizes an Euler–Lagrange computational fluid dynamics (CFD) model to uncover the two-phase flow behavior in MQL drilling. Air is the primary phase modeled as a compressible and turbulent flow. The lubricant droplets are simulated as discrete particles with a proper size distribution. Two-way coupling and droplet-wall interactions are both considered. The results show that the primary phase can reach velocities in the transonic region and is dependent on the helical path of the channel. In addition, most of the lubricant droplets (>95%) impact the channel wall to form fluid film instead of following the air stream. In the cutting zone, droplets can hardly reach the cutting edges in both circular and triangular channel shapes. Finally, a custom-made drilling testbed, along with a transparent work-material simulant, is used to observe and qualitatively validate these results. 
    more » « less
  3. In this work, we experimentally investigated the impact of surface roughness on drag reduction as well as the plastron stability of superhydrophobic surfaces (SHSs) in turbulent flows. A series of SHSs were fabricated by spraying hydrophobic nanoparticles on sandpapers. By changing the grit size of sandpapers from 240 to 1500, the root mean square roughness height (krms) of the SHSs varied from 4 to 14 μm. The experiments were performed in a turbulent channel flow facility, where the mean flow speed (Um) varied from 0.5 to 4.4 m/s, and the Reynolds number (Rem) based on Um and channel height changed from 3400 to 26 400. The drag reduction by SHSs was measured based on pressure drops in the fully developed flow region. The plastron status and gas fraction (φg) were simultaneously monitored by reflected-light microscopy. Our results showed a strong correlation between drag reduction and krms+ = krms/δv, where δv is the viscous length scale. For krms+ < 1, drag reduction was independent of krms+. A maximum 47% drag reduction was observed. For 1 < krms+ < 2, less drag reduction was observed due to the roughness effect. And for krms+ > 2, the SHSs caused an increase in drag. Furthermore, we found that surface roughness influenced the trend of plastron depletion in turbulent flows. As increasing Rem, φg reduced gradually for SHSs with large krms, but reduced rapidly and maintained as a constant for SHSs with small krms. Finally, we found that as increasing Rem, the slip length of SHS reduced, although φg was nearly a constant. 
    more » « less
  4. Abstract Achieving mobile liquid droplets on solid surfaces is crucial for various practical applications, such as self‐cleaning and anti‐fouling coatings. The last two decades have witnessed remarkable progress in designing functional surfaces, including super‐repellent surfaces and lubricant‐infused surfaces, which allow droplets to roll/slide on the surfaces. However, it remains a challenge to enable droplet motion on hydrophilic solid surfaces. In this work, we demonstrate mobile droplets containing ionic surfactants on smooth hydrophilic surfaces that are charged similarly to surfactant molecules. The ionic surfactant‐laden droplets display ultra‐low contact angle and ultra‐low sliding angle simultaneously on the hydrophilic surfaces. The sliding of the droplet is enabled by the adsorbed surfactant ahead of three‐phase contact line, which is regulated by the electrostatic interaction between ionic surfactant and charged solid surface. The droplet can maintain its motion even when the hydrophilic surface has defects. Furthermore, we demonstrate controlled manipulation of ionic surfactant‐laden droplets on hydrophilic surfaces with different patterns. We envision that our simple technique for achieving mobile droplets on hydrophilic surfaces can pave the way to novel slippery surfaces for different applications. 
    more » « less
  5. Abstract Ion bombardment of photoresist materials during plasma etching results in the formation of a surface dense amorphous carbon (DAC) layer that contributes to both etch resistance and the development of surface roughness. Real‐time ellipsometric measurements/analysis reveals that a C4F8‐containing plasma interacts with an Ar‐plasma‐formed DAC layer to produce a modified DAC/fluorocarbon (FC) layer by FC deposition/diffusion of fluorine into the surface. The depletion of the DAC layer via modification and ion bombardment causes the etch rate of the bulk layer to increase. As the modified surface layer is formed, a noticeable decrease in surface roughness decrease is observed. These findings provide an understanding of the mechanisms of atomic layer etching processes in photoresist materials. 
    more » « less