skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Strength of fine-coarse mixtures in rubble pile asteroids
Several lines of evidence indicate that most of the smaller asteroids (< 1 km) consist of granular material loosely bound together primarily by self-gravity; these are commonly called rubble piles. While the strength of these rubble piles is valuable information on their origin and fate, it is still debated in the literature. We report on a laboratory measurement campaign on fine-coarse mixtures of simulated asteroid regolith. In a series of table-top measurements, we have determined sample compression and shear strengths for various fine-fractions within coarse-grained samples. We used confined setups (less than 10cm in length) to measure the strength of the material in constricted environments such as an asteroid’s core and unconfined setups (greater than 10cm in length) to simulate open environments such as the surface of an asteroid. Using CI Orgeuil high fidelity asteroid soil simulant, we performed three measurement types to determine the strength of our samples: shear yield, which in turn provided values for the Angle of Internal Friction (AIF), bulk cohesion, and tensile strength of the samples; compression strength, which allowed to calculate the Young’s Modulus (YM); and the Angle Of Repose (AOR). From the AOR, we determined the coefficient of friction of each sample. Samples of regolith were created by measuring percentage by volume amounts of both coarse and fine grains into the measurement container. We prepared coarse grains in two size distributions, mm-sized and cm-sized. The fine fraction was composed of grains sieved between 100 and 250 μm. For compression and AOR measurements, we find that the strength of the coarse grain samples increases with the addition of a fine fraction. However, we find that the increase of the fine fraction in a sample of coarse grains does not consistently increase the sample shear strength. With increasing fine fractions, the AIF and bulk cohesion of the mixed samples decrease (until a point of saturation). This could be indicative of the fine grains acting as a lubricant as the larger grains move across each other, aiding rolling and reducing interlocking strength. Our findings suggest that in the case of the surface of an asteroid, the presence of fine grains does indeed increase the strength of coarse regolith material. However, fine grains in the regolith sublayers or the asteroid interior will reduce material strength due to grain interlocking and ease disruption. Therefore, rubble piles that are depleted in fine grains will have higher internal strength compared to those composed of grain size distributions that include sub-mm sized particles.  more » « less
Award ID(s):
1830609
PAR ID:
10475049
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
AAS/Division for Planetary Sciences Meeting Abstracts
Date Published:
Journal Name:
Bulletin of the AAS
Volume:
54
Issue:
08
Page Range / eLocation ID:
115-03
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Most smaller asteroids (1 km diameter) are granular material loosely bound together primarily by self-gravity known as rubble piles. In an effort to better understand the evolution of rubble-pile asteroids, we performed bulk measurements using granular simulant to study the effects of the presence of fine grains on the strength of coarse grains. Our laboratory samples consisted of fine–coarse mixtures of varying percentages of fine grains by volume of the sample. We measured the material’s angle of repose, Young’s Modulus, angle of internal friction, cohesion, and tensile strength by subjecting the samples to compressive and shear stresses. The coarse grains comprising the fine–coarse mixtures ranged from 1 mm to 20 mm (2 cm) and the fines were sieved to sub-millimeter sizes (1 mm). The measured angles of repose varied between 32–45 which increased with increasing fine percentage. In compression, samples generally increased in strength with increasing fine percentage for both confined and unconfined environments. In all cases, the peak strengths were not for purely fine grains but for a mixture of fine and coarse grains. Shear stress measurements yielded angles of internal friction ranging between 25 and 45 with a trend opposite that of the angle of repose, 300–550 Pa for bulk cohesion, and 0.5–1.1 kPa for tensile strength. Using other published works that include data from telescopic and in-situ observations as well as numerical simulations, we discussed the implications of our findings regarding rubble-pile formation, composition, evolution, and disruption. We find that the presence of fine grains in subsurface layers of regolith on an asteroid (confined environment) aids the avoidance of disruption due to impact. However these same fines increase an asteroid’s chance to disrupt or deform from high rotation speeds due to reduced grain interlocking. In surface layers (unconfined environments), we find that the presence of fine grains between coarse ones generates stronger cohesion and aids in the prevention of mass loss and surface shedding. 
    more » « less
  2. Introduction: With the capture of the first high- resolution, in-situ images of Near-Earth Objects (NEOs) a couple of decades ago [1–4], the ubiquity of regolith and the granular nature of small objects in the Solar System became apparent. Benefiting from an increased access to high computing power, new numerical studies emerged, modeling granular structures forming and evolving as small bodies in the Solar System [5–7]. Now adding laboratory studies on granular material strength for asteroid and other small body applications [8,9], we are steadily progressing in our understanding of how regolith is shaping the interiors and surfaces of these worlds. In addition, our ever-more powerful observation capabilities are uncovering interesting dust-related phenomena in the outer skirts of our Solar System, in the form of activity at large heliocentric distances and rings [10–12]. We find that our recent progress in understanding the behavior of granular material in small body environments also has applications to the more distant worlds of Centaurs and Trans-Neptunian Objects (TNOs). Internal Strength: We currently deduce internal friction of rubble piles from the observation of large numbers of small asteroids and their rotation rates, combined with the associated numerical simulations [13,14]. In the laboratory, we study internal friction of simulant materials using shear strength measurements [8]. Combining observations, modeling, and laboratory work, the picture emerges of rubble pile interiors being composed of coarse grains in the mm to cm range. The irregular shapes of the grains lead to mechanical interlocking, thus generating the internal friction required to match observations of the asteroid population [8,9]. We find that the presence of a fine fraction in the confined interior of a rubble pile actually leads weaker internal strength [9]. Surface Strength: Deducing surface regolith strength for NEOs is usually performed via average slope measurements [15–17] or, most notably, observing the outcome of an impact of known energy [18]. In the laboratory, we measure the angle of repose of simulant material via pouring tests, as well as its bulk cohesion using shear strength measurements [8]. In some cases, this allows us to infer grain size ranges for various regions of the surface and subsurface of pictured NEOs, beyond the resolution of their in-situ images. Surface Activity: The Rosetta mission revealed that a number of activity events on comet 67P/Churyumov–Gerasimenko were linked to active surface geology, most notably avalanches and cliff collapses [19]. In addition, the role of regolith strength in asteroid disruption patterns has been inferred from numerical simulations of rotating rubble piles [20]. By studying strength differences in simulant samples, it becomes apparent that a difference in cohesion between a surface and its subsurface layer can lead to activity events with surface mass shedding, without the presence of volatiles sublimating as a driver [8]. We show that such differences in surface strength can be brought upon by a depletion in fine grains or a change in composition (e.g. depletion in water ice) and could account for regular activity patterns on small bodies, independently of their distance to the Sun. This is of particular interest to the study of Centaur activity and a potential mechanism for feeding ring systems. 
    more » « less
  3. Abstract Regional stream sediment surveys are an important exploration tool used in the search for concealed or partially concealed porphyry deposits. It is shown here that quartz contained in the coarse fraction of stream sediments can be used as an indicator mineral to supplement geochemical analyses conducted on the fine fraction, such as the measurement of the bulk cyanide leach extractable gold content. A method is proposed that allows separation of quartz grains from the coarse rejects of stream sediment samples to prepare grain mounts for petrographic analysis. Based on optical cathodoluminescence microscopy and fluid inclusion petrography, the number of porphyry quartz grains in each grain mount is then identified. Case studies conducted at Vert de Gris in Haiti and Hides Creek in Papua New Guinea show that porphyry quartz grains could be confidently identified in sediments in the catchment areas of both porphyries. Because the cost of microscopic analysis of quartz is small compared to the expense of sampling and geochemical analysis, the developed technique could be routinely used in large greenfield exploration programs. It is envisaged here that petrographic analysis of quartz grains can contribute valuable information for prioritization of targets defined based on their geochemical signatures. 
    more » « less
  4. Abstract Mantle xenoliths from the Southern Alps, New Zealand, provide insight into the origin of mantle seismic anisotropy related to the Australian‐Pacific plate boundary. Most xenoliths from within 100 km lateral distance of the Alpine Fault are coarse grained, but a small number are finer grained protomylonites. The protomylonites contain connected networks of fine grains with a different crystallographic preferred orientation (CPO) to coarse porphyroclasts in the same xenolith, suggesting that protomylonites and coarse‐grained samples record different deformation kinematics. The CPOs of fine grains in protomylonites have monoclinic symmetry, with the 2‐fold rotation axis normal to a plane that contains olivine [010] and orthopyroxene [100] maxima, suggesting that the protomylonite deformation involved significant simple shear. Some coarse‐grained samples contain unconnected lenses and layers of fine grains with the same CPO as the coarse grains. Microstructures suggest that these fine grains formed by subgrain rotation recrystallization and that protomylonites may represent an up‐strain progression of this microstructure, where the connectivity of fine grains has allowed them to localize shear and develop a new Alpine Fault CPO. The samples tell us about the state of the mantle at 25 Ma, in the early history of the plate boundary. If this suite of samples is representative of the mantle beneath the Alpine Fault in the present day, then we can interpret the complex seismic anisotropy patterns in the lithospheric mantle as representative of blocks containing variably rotated older CPOs juxtaposed by narrow shear zones associated with Alpine Fault deformation. 
    more » « less
  5. Abstract Frictional sliding along grain boundaries in brittle shear zones can result in the fragmentation of individual grains, which ultimately can impact slip dynamics. During deformation at small scales, stick–slip motion can occur between grains when existing force chains break due to grain rearrangement or failure, resulting in frictional sliding of granular material. The rearrangement of the grains leads to dilation of the granular package, reducing the shear stress and subsequently leading to slip. Here, we conduct physical experiments employing HydroOrbs, an elasto-plastic material, to investigate grain comminution in granular media under simple shear conditions. Our findings demonstrate that the degree of grain comminution is dependent on both the normal force and the size of the grains. Using the experimental setup, we benchmark Discrete Element Method (DEM) numerical models, which are capable of simulating the movement, rotation, and fracturing of elasto-plastic grains subjected to simple shear. The DEM models successfully replicate both grain comminution patterns and horizontal force fluctuations observed in our physical experiments. They show that increasing normal forces correlate with higher horizontal forces and more fractured grains. The ability of our DEM models to accurately reproduce experimental results opens up new avenues for investigating various parameter spaces that may not be accessible through traditional laboratory experiments, for example, in assessing how internal friction or cohesion affect deformation in granular systems. 
    more » « less