skip to main content


This content will become publicly available on May 15, 2024

Title: Impact of blockers on user equipment angular diversity in THz Microcellular scenarios
The availability of large bandwidths in the terahertz (THz) band will be a crucial enabler of high data rate applications in next-generation wireless communication systems. The urban microcellular scenario is an essential deployment scenario where the base station (BS) is significantly higher than the user equipment (UE). Under practical operating conditions, moving objects (i.e., blockers) can intermittently obstruct various parts of the BSUE link. Therefore, in the current paper, we analyze the effect of such blockers. We assume a blockage of the strongest beam pair and investigate the availability and extent of angular diversity, i.e., alternative beampairs that can sustain communication when the strongest is blocked. The analysis uses double-directional channel measurements in urban microcellular scenarios for 145- 146 GHz with BS-UE distances between 18 to 83 m. We relate the communication-system quantities of beam diversity and capacity to the wireless propagation conditions. We show that the SNR loss due to blockage depends on the blocked angular range and the specific location, and we find mean blockage loss to be on the order of 10-20 dB in line-of-sight (LOS) and 5-12 dB in NLOS (non-LOS). This analysis can contribute to the design of intelligent algorithms or devices (e.g., beamforming, intelligent reflective surfaces) to overcome the impact of the blockage.  more » « less
Award ID(s):
1926913 2133655 2106602
NSF-PAR ID:
10427458
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
IEEE International Conference on Communications
ISSN:
1938-1883
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The availability of large bandwidths in the terahertz (THz) band will be a crucial enabler of high data rate applications in next-generation wireless communication systems. The urban microcellular scenario is an essential deployment scenario where the base station (BS) is significantly higher than the user equipment (UE). Under practical operating conditions, moving objects (i.e., blockers) can intermittently obstruct various parts of the BSUE link. Therefore, in the current paper, we analyze the effect of such blockers. We assume a blockage of the strongest beam pair and investigate the availability and extent of angular diversity, i.e., alternative beampairs that can sustain communication when the strongest is blocked. The analysis uses double-directional channel measurements in urban microcellular scenarios for 145- 146 GHz with BS-UE distances between 18 to 83 m. We relate the communication-system quantities of beam diversity and capacity to the wireless propagation conditions. We show that the SNR loss due to blockage depends on the blocked angular range and the specific location, and we find mean blockage loss to be on the order of 10-20 dB in line-of-sight (LOS) and 5-12 dB in NLOS (non-LOS). This analysis can contribute to the design of intelligent algorithms or devices (e.g., beamforming, intelligent reflective surfaces) to overcome the impact of the blockage. 
    more » « less
  2. Millimeter-wave (mm-wave) systems rely on narrow- beams to cope with the severe signal attenuation in the mm- wave frequency band. However, susceptibility to beam mis- alignment due to mobility or blockage requires the use of beam- alignment schemes, with huge cost in terms of overhead and use of system resources. In this paper, a beam-alignment scheme is proposed based on Bayesian multi-armed bandits, with the goal to maximize the alignment probability and the data-communication throughput. A Bayesian approach is proposed, by considering the state as a posterior distribution over angles of arrival (AoA) and of departure (AoD), given the history of feedback signaling and of beam pairs scanned by the base-station (BS) and the user- end (UE). A simplified sufficient statistic for optimal control is identified, in the form of preference of BS-UE beam pairs. By bounding a value function, the second-best preference policy is formulated, which strikes an optimal balance between exploration and exploitation by selecting the beam pair with the current second-best preference. Through Monte-Carlo simulation with analog beamforming, the superior performance of the second- best preference policy is demonstrated in comparison to existing schemes based on first-best preference, linear Thompson sampling, and upper confidence bounds, with up to 7%, 10% and 30% improvements in alignment probability, respectively. 
    more » « less
  3. In urban environments, tall buildings or structures can pose limits on the direct channel link between a base station (BS) and an Internet-of-Thing device (IoTD) for wireless communication. Unmanned aerial vehicles (UAVs) with a mounted reconfigurable intelligent surface (RIS), denoted as UAV-RIS, have been introduced in recent works to enhance the system throughput capacity by acting as a relay node between the BS and the IoTDs in wireless access networks. Uncoordinated UAVs or RIS phase shift elements will make unnecessary adjustments that can significantly impact the signal transmission to IoTDs in the area. The concept of age of information (AoI) is proposed in wireless network research to categorize the freshness of the received update message. To minimize the average sum of AoI (ASoA) in the network, two model-free deep reinforcement learning (DRL) approaches – Off-Policy Deep Q-Network (DQN) and On-Policy Proximal Policy Optimization (PPO) – are developed to solve the problem by jointly optimizing the RIS phase shift, the location of the UAV-RIS, and the IoTD transmission scheduling for large-scale IoT wireless networks. Analysis of loss functions and extensive simulations is performed to compare the stability and convergence performance of the two algorithms. The results reveal the superiority of the On-Policy approach, PPO, over the Off-Policy approach, DQN, in terms of stability, convergence speed, and under diverse environment settings 
    more » « less
  4. Indoor blockage in a millimeter wave (mmWave) wireless communication link introduces significant signal attenuation. Solving the indoor blockage problem is critical to effectively using the unlicensed 60 GHz band spectrum. This work used various V-band horn antennas to collect signal measurements in an indoor lab environment. As an object blocks the Tx- Rx line of sight (LOS) path, the signal fades deeply. Experimental results showed that switching to a wider beam with lower gain has the potential to partially restore or maintain a communicating link. Effective beam switching and coordinated beam steering can shorten deep fades which is crucial for mm Wave communication systems that are very sensitive to the spatial characteristics of the environment. The experimental results in this paper thus motivate the design of future indoor mm Wave antennas capable of beam switching and facilitate fast beam search. 
    more » « less
  5. Millimeter-wave wireless LANs are targeted for use with bandwidth-intensive applications such as virtual/augmented reality and real-time high-definition video. To maintain high throughput while addressing mmWave signal blockages, multiple access points (APs) within one room to improve line-of-sight conditions is considered a promising approach. In a scenario with fixed and mobile (human) obstacles, we mathematically analyze LoS blockages produced by mobility, and use the analysis to develop a multi-AP association scheme. Our scheme statically assigns primary and backup APs in order to maximize blockage robustness and perform load balancing among APs. Simulation results show that: 1) our static approach can provide blockage tolerance close to that of an expensive dynamic probing approach while achieving higher throughput, 2) the use of client mobility patterns, if known, can improve our static approach even further, and 3) our approach achieves significantly better fairness and load balancing than existing approaches. 
    more » « less