Terahertz frequency bands will likely be used for the next-generation wireless communication systems to provide data rates of hundreds of Gbps or even Tbps because of the wide swaths of unused and unexplored spectrum. This paper presents two outdoor wideband measurement campaigns in downtown Brooklyn (urban microcell environment) in the sub-THz band of 140 GHz with TX-RX separation distance up to 100 m: i) terrestrial urban microcell measurement campaign, and ii) rooftop surrogate satellite and backhaul measurement campaign. Outdoor omnidirectional and directional path loss models for both line-of-sight and non-line-of-sight scenarios, as well as foliage loss (signal attenuation through foliage), are provided at 140 GHz for urban microcell environments. These measurements and models provide an understanding of both the outdoor terrestrial (e.g., 6G cellular and backhaul) and non-terrestrial (e.g., satellite and unmanned aerial vehicle communications) wireless channels, and prove the feasibility of using THz frequency bands for outdoor fixed and mobile cellular communications. This paper can be used for future outdoor wireless system design at frequencies above 100 GHz.
more »
« less
THz Band Channel Measurements and Statistical Modeling for Urban Microcellular Environments
The THz band has attracted considerable attention for next-generation wireless communications due to the large amount of available bandwidth that may be key to meet the rapidly increasing data rate requirements. Before deploying a system in this band, a detailed wireless channel analysis is required as the basis for proper design and testing of system implementations. One of the most important deployment scenarios of this band is the outdoor microcellular environment, where the Transmitter (Tx) and the Receiver (Rx) have a significant height difference (typically ≥10 m). In this paper, we present double-directional (i.e., directionally resolved at both link ends) channel measurements in such a microcellular scenario encompassing street canyons and an open square. Measurements are done for a 1 GHz bandwidth between 145–146 GHz and an antenna beamwidth of 13 degree; distances between Tx and Rx are up to 85 m and the Tx is at a height of 11.5 m from the ground. The measurements are analyzed to estimate path loss, shadowing, delay spread, angular spread, and multipath component (MPC) power distribution. These results allow the development of more realistic and detailed THz system performance assessment.
more »
« less
- Award ID(s):
- 2133655
- PAR ID:
- 10562081
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Transactions on Wireless Communications
- Volume:
- 23
- Issue:
- 7
- ISSN:
- 1536-1276
- Page Range / eLocation ID:
- 6719 to 6734
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The availability of large bandwidths in the terahertz (THz) band will be a crucial enabler of high data rate applications in next-generation wireless communication systems. The urban microcellular scenario is an essential deployment scenario where the base station (BS) is significantly higher than the user equipment (UE). Under practical operating conditions, moving objects (i.e., blockers) can intermittently obstruct various parts of the BSUE link. Therefore, in the current paper, we analyze the effect of such blockers. We assume a blockage of the strongest beam pair and investigate the availability and extent of angular diversity, i.e., alternative beampairs that can sustain communication when the strongest is blocked. The analysis uses double-directional channel measurements in urban microcellular scenarios for 145- 146 GHz with BS-UE distances between 18 to 83 m. We relate the communication-system quantities of beam diversity and capacity to the wireless propagation conditions. We show that the SNR loss due to blockage depends on the blocked angular range and the specific location, and we find mean blockage loss to be on the order of 10-20 dB in line-of-sight (LOS) and 5-12 dB in NLOS (non-LOS). This analysis can contribute to the design of intelligent algorithms or devices (e.g., beamforming, intelligent reflective surfaces) to overcome the impact of the blockage.more » « less
-
The availability of large bandwidths in the terahertz (THz) band will be a crucial enabler of high data rate applications in next-generation wireless communication systems. The urban microcellular scenario is an essential deployment scenario where the base station (BS) is significantly higher than the user equipment (UE). Under practical operating conditions, moving objects (i.e., blockers) can intermittently obstruct various parts of the BSUE link. Therefore, in the current paper, we analyze the effect of such blockers. We assume a blockage of the strongest beam pair and investigate the availability and extent of angular diversity, i.e., alternative beampairs that can sustain communication when the strongest is blocked. The analysis uses double-directional channel measurements in urban microcellular scenarios for 145- 146 GHz with BS-UE distances between 18 to 83 m. We relate the communication-system quantities of beam diversity and capacity to the wireless propagation conditions. We show that the SNR loss due to blockage depends on the blocked angular range and the specific location, and we find mean blockage loss to be on the order of 10-20 dB in line-of-sight (LOS) and 5-12 dB in NLOS (non-LOS). This analysis can contribute to the design of intelligent algorithms or devices (e.g., beamforming, intelligent reflective surfaces) to overcome the impact of the blockage.more » « less
-
Abstract—Emerging applications such as wireless sensing, position location, robotics, and many more are driven by the ultra-wide bandwidths available at millimeter-wave (mmWave) and Terahertz (THz) frequencies. The characterization and effi- cient utilization of wireless channels at these extremely high frequencies require detailed knowledge of the radio propaga- tion characteristics of the channels. Such knowledge is developed through empirical observations of operating conditions using wireless transceivers that measure the impulse response through channel sounding. Today, cutting-edge channel sounders rely on several bulky RF hardware components with complicated interconnections, large parasitics, and sub-GHz RF bandwidth. This brief presents a compact sliding correlation-based chan- nel sounder baseband built on a monolithic integrated circuit (IC) using 65 nm CMOS, implemented as an evaluation board achieving a 2 GHz RF bandwidth. The IC is the world’s first gigabit-per-second channel sounder baseband implemented in low-cost CMOS. The presented single-board system can be employed at both the transmit and receive baseband to study multipath characteristics and path loss. Thus, the single-board implementation provides an inexpensive and compact solution for sliding correlation-based channel sounding with 1 ns multipath delay resolution. Index Terms—142 GHz, channel sounder, mmWave, on-chip baseband, PN sequence, RF hardware, sliding correlation, THz, XPDmore » « less
-
Design and standardization of future millimeter-wave (mmWave) wireless communications systems require accurate models of wireless propagation channels. In particular, comprehensive statistical models describing the effect of human bodies moving randomly in the surrounding environment, acting as reflectors or absorbers, on the received power and delay spread are urgently needed. To enable these, new measurements campaigns are required based on channel sounders designed specifically to capture the realtime dynamics of the channel responses. This paper proposes a new methodology to enable fully dynamic measurements with a pseudonoise (PN)-sequence channel sounder by means of quasi-perfect transmitter-receiver (Tx-Rx) synchronization and suppression of probing signal effects in the post-processed channel impulse responses (CIRs). This approach allows the identification of the weak multipath components (MPCs) originated by reflections on the human body. The approach is validated by analysing CIRs collected in an indoor environment with one person moving close to the 60 GHz link. The results also demonstrate that future mmWave systems could exploit these additional MPCs and benefit from human interactions.more » « less
An official website of the United States government

