skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 AM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Rapid adaptation to a novel pathogen through disease tolerance in a wild songbird
Animal hosts can adapt to emerging infectious disease through both disease resistance, which decreases pathogen numbers, and disease tolerance, which limits damage during infection without limiting pathogen replication. Both resistance and tolerance mechanisms can drive pathogen transmission dynamics. However, it is not well understood how quickly host tolerance evolves in response to novel pathogens or what physiological mechanisms underlie this defense. Using natural populations of house finches ( Haemorhous mexicanus ) across the temporal invasion gradient of a recently emerged bacterial pathogen ( Mycoplasma gallisepticum ), we find rapid evolution of tolerance (<25 years). In particular, populations with a longer history of MG endemism have less pathology but similar pathogen loads compared with populations with a shorter history of MG endemism. Further, gene expression data reveal that more-targeted immune responses early in infection are associated with tolerance. These results suggest an important role for tolerance in host adaptation to emerging infectious diseases, a phenomenon with broad implications for pathogen spread and evolution.  more » « less
Award ID(s):
1950307 1755197 1754872
PAR ID:
10427461
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
McGraw, Elizabeth A.
Date Published:
Journal Name:
PLOS Pathogens
Volume:
19
Issue:
6
ISSN:
1553-7374
Page Range / eLocation ID:
e1011408
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Pathogen adaptations during host-pathogen co-evolution can cause the host balance between immunity and immunopathology to rapidly shift. However, little is known in natural disease systems about the immunological pathways optimised through the trade-off between immunity and self-damage. The evolutionary interaction between the conjunctival bacterial infectionMycoplasma gallisepticum(MG) and its avian host, the house finch (Haemorhous mexicanus), can provide insights into such adaptations in immune regulation. Here we use experimental infections to reveal immune variation in conjunctival tissue for house finches captured from four distinct populations differing in the length of their co-evolutionary histories with MG and their disease tolerance (defined as disease severity per pathogen load) in controlled infection studies. To differentiate contributions of host versus pathogen evolution, we compared house finch responses to one of two MG isolates: the original VA1994 isolate and a more evolutionarily derived one, VA2013. To identify differential gene expression involved in initiation of the immune response to MG, we performed 3’-end transcriptomic sequencing (QuantSeq) of samples from the infection site, conjunctiva, collected 3-days post-infection. In response to MG, we observed an increase in general pro-inflammatory signalling, as well as T-cell activation and IL17 pathway differentiation, associated with a decrease in the IL12/IL23 pathway signalling. The immune response was stronger in response to the evolutionarily derived MG isolate compared to the original one, consistent with known increases in MG virulence over time. The host populations differed namely in pre-activation immune gene expression, suggesting population-specific adaptations. Compared to other populations, finches from Virginia, which have the longest co-evolutionary history with MG, showed significantly higher expression of anti-inflammatory genes and Th1 mediators. This may explain the evolution of disease tolerance to MG infection in VA birds. We also show a potential modulating role of BCL10, a positive B- and T-cell regulator activating the NFKB signalling. Our results illuminate potential mechanisms of house finch adaptation to MG-induced immunopathology, contributing to understanding of the host evolutionary responses to pathogen-driven shifts in immunity-immunopathology trade-offs. 
    more » « less
  2. Abstract Resistance and tolerance are unique host defence strategies that can limit the impacts of a pathogen on a host. However, for most wildlife–pathogen systems, there are still fundamental uncertainties regarding (a) how changes in resistance and tolerance can affect disease outcomes and (b) the mechanisms underlying resistance and tolerance in host populations.Here, we first compared observed patterns of resistance and tolerance and their effects on disease outcomes among salamander species that are susceptible to infection and mortality from the emerging fungal pathogenBatrachochytrium salamandrivorans(Bsal). We then tested whether two putative mechanisms that contribute to host resistance and tolerance, skin sloughing and skin lesion reduction, predicted reducedBsalgrowth rate or increased host survival during infection, respectively.We performed multi‐doseBsalchallenge experiments on four species of Salamandridae found throughout North America. We combined the laboratory experiments with dynamic models and sensitivity analysis to examine how changes in load‐dependent resistance and tolerance functions affectedBsal‐induced mortality risk. Finally, we used our disease model to test whether skin sloughing and lesion reduction predicted variability in infection outcomes not described byBsalinfection intensity.We found that resistance and tolerance differed significantly among salamander species, with the most susceptible species being both less resistance and less tolerant ofBsalinfection. Our dynamic model showed that the relative influence of resistance versus tolerance on host survival was species‐dependent—increasing resistance was only more influential than increasing tolerance for the least tolerant species where changes in pathogen load had a threshold‐like effect on host survival. Testing two candidate mechanisms of resistance and tolerance, skin sloughing and lesion reduction, respectively, we found limited support that either of these processes were strong mechanisms of host defence.Our study contributes to a broader understanding of resistance and tolerance in host–pathogen systems by showing that differences in host tolerance can significantly affect whether changes in resistance or tolerance have larger effects on disease outcomes, highlighting the need for species and even population‐specific management approaches that target host defence strategies. A freePlain Language Summarycan be found within the Supporting Information of this article. 
    more » « less
  3. Abstract Host competence, or how well an individual transmits pathogens, varies substantially within and among animal populations. As this variation can alter the course of epidemics and epizootics, revealing its underlying causes will help predict and control the spread of disease. One host trait that could drive heterogeneity in competence is host tolerance, which minimizes fitness losses during infection without decreasing pathogen load. In many cases, tolerance should increase competence by extending infectious periods and enabling behaviors that facilitate contact among hosts. However, we argue that the links between tolerance and competence are more varied. Specifically, the different physiological and behavioral mechanisms by which hosts achieve tolerance should have a range of effects on competence, enhancing the ability to transmit pathogens in some circumstances and impeding it in others. Because tissue-based pathology (damage) that reduces host fitness is often critical for pathogen transmission, we focus on two mechanisms that can underlie tolerance at the tissue level: damage-avoidance and damage-repair. As damage-avoidance reduces transmission-enhancing pathology, this mechanism is likely to decrease host competence and pathogen transmission. In contrast, damage-repair does not prevent transmission-relevant pathology from occurring. Rather, damage-repair provides new, healthy tissues that pathogens can exploit, likely extending the infectious period and increasing host competence. We explore these concepts through graphical models and present three disease systems in which damage-avoidance and damage-repair alter host competence in the predicted directions. Finally, we suggest that by incorporating these links, future theoretical studies could provide new insights into infectious disease dynamics and host–pathogen coevolution. 
    more » « less
  4. Abstract Infectious disease systems frequently exhibit strong seasonal patterns, yet the mechanisms that underpin intra‐annual cycles are unclear, particularly in tropical regions. We hypothesized that host immune function fluctuates seasonally, contributing to oscillations in infection patterns in a tropical disease system. To test this hypothesis, we investigated a key host defense of amphibians against a lethal fungal pathogen,Batrachochytrium dendrobatidis(Bd). We integrated two field experiments in which we perturbed amphibian skin secretions, a critical host immune mechanism, in Panamanian rocket frogs (Colostethus panamansis). We found that this immunosuppressive technique of reducing skin secretions in wild frog populations increasedBdprevalence and infection intensity, indicating that this immune defense contributes to resistance toBdin wild frog populations. We also found that the chemical composition and anti‐Bdeffectiveness of frog skin secretions varied across seasons, with greater pathogen inhibition during the dry season relative to the wet season. These results suggest that the effectiveness of this host defense mechanism shifts across seasons, likely contributing to seasonal infection patterns in a lethal disease system. More broadly, our findings indicate that host immune defenses can fluctuate across seasons, even in tropical regions where temperatures are relatively stable, which advances our understanding of intra‐annual cycles of infectious disease dynamics. 
    more » « less
  5. Acute infections can alter foraging and movement behaviors relevant to sociality and pathogen spread. However, few studies have directly examined how acute infections caused by directly transmitted pathogens influence host social preferences. While infected hosts often express sickness behaviors (e.g., lethargy) that can reduce social associations with conspecifics, enhanced sociality during infection might be favored in some systems if social grouping improves host survival of infection. Directly assaying social preferences of infected hosts is needed to elucidate potential changes in social preferences that may act as a form of behavioral tolerance (defined as using behavior to minimize fitness costs of infection). We tested how infection alters sociality in juvenile house finches (Haemorhous mexicanus), which are both highly gregarious and particularly susceptible to infection by the bacterial pathogenMycoplasma gallisepticum(MG). We inoculated 33 wild‐caught but captive‐held juvenile house finches with MG or media (sham control). At peak infection, birds were given a choice assay to assess preference for associating near a flock versus an empty cage. We then repeated this assay after all birds had recovered from infection. Infected birds were significantly more likely than controls to spend time associating with, and specifically foraging near, the flock. However, after infected birds had recovered from MG infection, there were no significant differences in the amount of time birds in each treatment spent with the flock. These results indicate augmented social preferences during active infection, potentially as a form of behavioral tolerance. Notably, infected birds showed strong social preferences regardless of variation in disease severity or pathogen loads, with 14/19 harboring high loads (5–6 log10copies of MG) at the time of the assay. Overall, our results show that infection with a directly transmitted pathogen can augment social preferences, with important implications for MG spread in natural populations. 
    more » « less