skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: What Does Tolerance Mean for Animal Disease Dynamics When Pathology Enhances Transmission?
Abstract Host competence, or how well an individual transmits pathogens, varies substantially within and among animal populations. As this variation can alter the course of epidemics and epizootics, revealing its underlying causes will help predict and control the spread of disease. One host trait that could drive heterogeneity in competence is host tolerance, which minimizes fitness losses during infection without decreasing pathogen load. In many cases, tolerance should increase competence by extending infectious periods and enabling behaviors that facilitate contact among hosts. However, we argue that the links between tolerance and competence are more varied. Specifically, the different physiological and behavioral mechanisms by which hosts achieve tolerance should have a range of effects on competence, enhancing the ability to transmit pathogens in some circumstances and impeding it in others. Because tissue-based pathology (damage) that reduces host fitness is often critical for pathogen transmission, we focus on two mechanisms that can underlie tolerance at the tissue level: damage-avoidance and damage-repair. As damage-avoidance reduces transmission-enhancing pathology, this mechanism is likely to decrease host competence and pathogen transmission. In contrast, damage-repair does not prevent transmission-relevant pathology from occurring. Rather, damage-repair provides new, healthy tissues that pathogens can exploit, likely extending the infectious period and increasing host competence. We explore these concepts through graphical models and present three disease systems in which damage-avoidance and damage-repair alter host competence in the predicted directions. Finally, we suggest that by incorporating these links, future theoretical studies could provide new insights into infectious disease dynamics and host–pathogen coevolution.  more » « less
Award ID(s):
1950307
PAR ID:
10120006
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Integrative and Comparative Biology
Volume:
59
Issue:
5
ISSN:
1540-7063
Page Range / eLocation ID:
p. 1220-1230
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. McGraw, Elizabeth A. (Ed.)
    Animal hosts can adapt to emerging infectious disease through both disease resistance, which decreases pathogen numbers, and disease tolerance, which limits damage during infection without limiting pathogen replication. Both resistance and tolerance mechanisms can drive pathogen transmission dynamics. However, it is not well understood how quickly host tolerance evolves in response to novel pathogens or what physiological mechanisms underlie this defense. Using natural populations of house finches ( Haemorhous mexicanus ) across the temporal invasion gradient of a recently emerged bacterial pathogen ( Mycoplasma gallisepticum ), we find rapid evolution of tolerance (<25 years). In particular, populations with a longer history of MG endemism have less pathology but similar pathogen loads compared with populations with a shorter history of MG endemism. Further, gene expression data reveal that more-targeted immune responses early in infection are associated with tolerance. These results suggest an important role for tolerance in host adaptation to emerging infectious diseases, a phenomenon with broad implications for pathogen spread and evolution. 
    more » « less
  2. Individuals can express a range of disease phenotypes during infection, with important implications for epidemics. Tolerance, in particular, is a host response that minimizes the per-pathogen fitness costs of infection. Because tolerant hosts show milder clinical signs and higher survival, despite similar pathogen burdens, their potential for prolonged pathogen shedding may facilitate the spread of pathogens. To test this, we simulated outbreaks of mycoplasmal conjunctivitis in house finches, asking how the speed of transmission varied with tissue-specific and behavioural components of tolerance, milder conjunctivitis and anorexia for a given pathogen load, respectively. Because tissue-specific tolerance hinders pathogen deposition onto bird feeders, important transmission hubs, we predicted it would slow transmission. Because behavioural tolerance should increase interactions with bird feeders, we predicted it would speed transmission. Our findings supported these predictions, suggesting that variation in tolerance could help identify individuals most likely to transmit pathogens. 
    more » « less
  3. Abstract The densities of highly competent plant hosts (i.e. those that are susceptible to and successfully transmit a pathogen) may shape pathogen community composition and disease severity, altering disease risk and impacts. Life history and evolutionary history can influence host competence; longer lived species tend to be better defended than shorter lived species and pathogens adapt to infect species with which they have longer evolutionary histories. It is unclear, however, how the densities of species that differ in competence due to life and evolutionary histories affect plant pathogen community composition and disease severity.We examined foliar fungal pathogens of two host groups in a California grassland: native perennial and non‐native annual grasses. We first characterized pathogen community composition and disease severity of the two host groups to approximate differences in competence. We then used observational and manipulated gradients of native perennial and non‐native annual grass densities to assess the effects of each host group on pathogen community composition and disease severity in 1‐m2plots.Native perennial and non‐native annual grasses hosted distinct pathogen communities but shared generalist pathogens. Native perennial grasses experienced 26% higher disease severity than non‐native annuals. Only the observational gradient of native perennial grass density affected disease severity; there were no other significant relationships between host group density and either disease severity or pathogen community composition.Synthesis. The life and evolutionary histories of grasses likely influence their competence for different pathogen species, exemplified by distinct pathogen communities and differences in disease severity. However, there was limited evidence that the density of either host group affected pathogen community composition or disease severity. Therefore, competence for different pathogens likely shapes pathogen community composition and disease severity but may not interact with host density to alter disease risk and impacts at small scales. 
    more » « less
  4. Co-infections of hosts by multiple pathogen species are ubiquitous, but predicting their impact on disease remains challenging. Interactions between co-infecting pathogens within hosts can alter pathogen transmission, with the impact on transmission typically dependent on the relative arrival order of pathogens within hosts (within-host priority effects). However, it is unclear how these within-host priority effects influence multi-pathogen epidemics, particularly when the arrival order of pathogens at the host-population scale varies. Here, we combined models and experiments with zooplankton and their naturally co-occurring fungal and bacterial pathogens to examine how within-host priority effects influence multi-pathogen epidemics. Epidemiological models parametrized with within-host priority effects measured at the single-host scale predicted that advancing the start date of bacterial epidemics relative to fungal epidemics would decrease the mean bacterial prevalence in a multi-pathogen setting, while models without within-host priority effects predicted the opposite effect. We tested these predictions with experimental multi-pathogen epidemics. Empirical dynamics matched predictions from the model including within-host priority effects, providing evidence that within-host priority effects influenced epidemic dynamics. Overall, within-host priority effects may be a key element of predicting multi-pathogen epidemic dynamics in the future, particularly as shifting disease phenology alters the order of infection within hosts. 
    more » « less
  5. Predicting pathogen emergence and spillover risk requires understanding the determinants of a pathogens' host range and the traits involved in host competence. While host competence is often considered a fixed species-specific trait, it may be variable if pathogens diversify across hosts. Balancing selection can lead to maintenance of pathogen polymorphisms (multiple-niche-polymorphism; MNP). The causative agent of Lyme disease, Borrelia burgdorferi ( Bb ), provides a model to study the evolution of host adaptation, as some Bb strains defined by their outer surface protein C ( ospC ) genotype, are widespread in white-footed mice and others are associated with non-rodent vertebrates (e.g. birds). To identify the mechanisms underlying potential strain × host adaptation, we infected American robins and white-footed mice, with three Bb strains of different ospC genotypes. Bb burdens varied by strain in a host-dependent fashion, and strain persistence in hosts largely corresponded to Bb survival at early infection stages and with transmission to larvae (i.e. fitness). Early survival phenotypes are associated with cell adhesion, complement evasion and/or inflammatory and antibody-mediated removal of Bb, suggesting directional selective pressure for host adaptation and the potential role of MNP in maintaining OspC diversity. Our findings will guide future investigations to inform eco-evolutionary models of host adaptation for microparasites. 
    more » « less