skip to main content


Title: Reinventing the public square and early educational settings through culturally informed, community co-design: Playful Learning Landscapes
What if the environment could be transformed in culturally-responsive and inclusive ways to foster high-quality interactions and spark conversations that drive learning? In this article, we describe a new initiative accomplishing this, called Playful Learning Landscapes (PLL). PLL is an evidence-based initiative that blends findings from the science of learning with community-based participatory research to transform physical public spaces and educational settings into playful learning hubs. Here, we describe our model for conducting this research, which is mindful of three key components: community input, how children learn best, and what children need to learn to be successful in the 21st century economy. We describe how this model was implemented in two PLL case studies: one in a predominantly Latine community and the second in early childhood education classrooms. Furthermore, we describe how research employing our model can be rigorously and reliably evaluated using observational and methodological tools that respond to diverse cultural settings and learning outcomes. For example, our work evaluates how PLL impacts adult–child interaction quality and language use, attitudes about play and learning, and community civic engagement. Taken together, this article highlights new ways to involve community voices in developmental and educational research and provides a model of how science can be translated into practice and evaluated in culturally responsive ways. This synthesis of our process and evaluation can be used by researchers, policymakers, and educators to reimagine early educational experiences with an eye toward the built environment that children inhabit in everyday life, creating opportunities that foster lifelong learning.  more » « less
Award ID(s):
2005776
NSF-PAR ID:
10427533
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Psychology
Volume:
13
ISSN:
1664-1078
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The research objective of this NSF-funded study is to explore and understand how open-ended, hands-on making work and activities can reflect student learning trajectories and learning gains in the product-based learning, undergraduate engineering classroom. The aim is to expand understanding of what making learning in the context of engineering design education might be and to illustrate educational pathways within the engineering education curriculum. Making is rooted in constructionism – learning by doing and constructing knowledge through that doing. Aspects of making work and activities that are unique to making that could appear in the engineering classroom or curriculum include: sharing, practical ingenuity, personal investment, playful invention, risk taking, community building and self-directed learning. The main research questions of this work is: How do engineering students learn and apply making? What are the attributes of making in the engineering classroom? Empirical evidence of what making in the engineering classroom looks like, and how it changes over time, and how students conceptualize making through making, designerly, and engineering ways of knowing-doing-acting will come from revisiting and additional qualitative analysis of student project data collected during a product-based learning course engineering design course. To best address the research question, this proposed study proposes multiple qualitative methods to collect and analyze data on engineering students learning making. We aim to triangulate what students think they are learning, what they are being taught, and what students are demonstrating. This work is exploratory in nature. In our approach to understanding making outside of formal engineering education, at events like Maker Faires in the Maker Community, it does seem evident that there is a lot of overlap between a making mindset and a designerly way of knowing or engineering way of knowing. In the sphere of formal engineering education however, making is regularly viewed as lesser than engineering, engineering design without the engineering science or analysis. Making is not yet valued as part of formal engineering education efforts. If making is something that can be connected to beneficial student learning and is additive to the required technical content and provides a means for students to figure out what area of problems they want to tackle in the studies and beyond, it would make for a student-centered making revolution. This study advances the knowledge of the learning pathways of making by capturing empirical evidence of such learning trajectories. This study will advance the currently limited knowledge of learning in the making community and making in the engineering classroom. Initial findings generated during this study describe the learning trajectories of engineers learning making. By examining the engineering student making learning experience through the lens of cognitive science and illustrating empirical making learning trajectories, this work may impact the quality of engineering design teaching. By sharing learning trajectories across multiple communities, we seek to change the conversation by illuminating pathways for a wider array of student makers to become the makers and engineers of the future. 
    more » « less
  2. The research objective of this NSF-funded study is to explore and understand how open-ended, hands-on making work and activities can reflect student learning trajectories and learning gains in the product-based learning, undergraduate engineering classroom. The aim is to expand understanding of what making learning in the context of engineering design education might be and to illustrate educational pathways within the engineering education curriculum. Making is rooted in constructionism – learning by doing and constructing knowledge through that doing. Aspects of making work and activities that are unique to making that could appear in the engineering classroom or curriculum include: sharing, practical ingenuity, personal investment, playful invention, risk taking, community building and self-directed learning. The main research questions of this work is: How do engineering students learn and apply making? What are the attributes of making in the engineering classroom? Empirical evidence of what making in the engineering classroom looks like, and how it changes over time, and how students conceptualize making through making, designerly, and engineering ways of knowing-doing-acting will come from revisiting and additional qualitative analysis of student project data collected during a product-based learning course engineering design course. To best address the research question, this proposed study proposes multiple qualitative methods to collect and analyze data on engineering students learning making. We aim to triangulate what students think they are learning, what they are being taught, and what students are demonstrating. This work is exploratory in nature. In our approach to understanding making outside of formal engineering education, at events like Maker Faires in the Maker Community, it does seem evident that there is a lot of overlap between a making mindset and a designerly way of knowing or engineering way of knowing. In the sphere of formal engineering education however, making is regularly viewed as lesser than engineering, engineering design without the engineering science or analysis. Making is not yet valued as part of formal engineering education efforts. If making is something that can be connected to beneficial student learning and is additive to the required technical content and provides a means for students to figure out what area of problems they want to tackle in the studies and beyond, it would make for a student-centered making revolution. This study advances the knowledge of the learning pathways of making by capturing empirical evidence of such learning trajectories. This study will advance the currently limited knowledge of learning in the making community and making in the engineering classroom. Initial findings generated during this study describe the learning trajectories of engineers learning making. By examining the engineering student making learning experience through the lens of cognitive science and illustrating empirical making learning trajectories, this work may impact the quality of engineering design teaching. By sharing learning trajectories across multiple communities, we seek to change the conversation by illuminating pathways for a wider array of student makers to become the makers and engineers of the future. 
    more » « less
  3. The research objective of this NSF-funded study is to explore and understand how open-ended, hands-on making work and activities can reflect student learning trajectories and learning gains in the product-based learning, undergraduate engineering classroom. The aim is to expand understanding of what making learning in the context of engineering design education might be and to illustrate educational pathways within the engineering education curriculum. Making is rooted in constructionism – learning by doing and constructing knowledge through that doing. Aspects of making work and activities that are unique to making that could appear in the engineering classroom or curriculum include: sharing, practical ingenuity, personal investment, playful invention, risk taking, community building and self-directed learning. The main research questions of this work is: How do engineering students learn and apply making? What are the attributes of making in the engineering classroom? Empirical evidence of what making in the engineering classroom looks like, and how it changes over time, and how students conceptualize making through making, designerly, and engineering ways of knowing-doing-acting will come from revisiting and additional qualitative analysis of student project data collected during a product-based learning course engineering design course. To best address the research question, this proposed study proposes multiple qualitative methods to collect and analyze data on engineering students learning making. We aim to triangulate what students think they are learning, what they are being taught, and what students are demonstrating. This work is exploratory in nature. In our approach to understanding making outside of formal engineering education, at events like Maker Faires in the Maker Community, it does seem evident that there is a lot of overlap between a making mindset and a designerly way of knowing or engineering way of knowing. In the sphere of formal engineering education however, making is regularly viewed as lesser than engineering, engineering design without the engineering science or analysis. Making is not yet valued as part of formal engineering education efforts. If making is something that can be connected to beneficial student learning and is additive to the required technical content and provides a means for students to figure out what area of problems they want to tackle in the studies and beyond, it would make for a student-centered making revolution. This study advances the knowledge of the learning pathways of making by capturing empirical evidence of such learning trajectories. This study will advance the currently limited knowledge of learning in the making community and making in the engineering classroom. Initial findings generated during this study describe the learning trajectories of engineers learning making. By examining the engineering student making learning experience through the lens of cognitive science and illustrating empirical making learning trajectories, this work may impact the quality of engineering design teaching. By sharing learning trajectories across multiple communities, we seek to change the conversation by illuminating pathways for a wider array of student makers to become the makers and engineers of the future. 
    more » « less
  4. The research objective of this NSF-funded study is to explore and understand how open-ended, hands-on making work and activities can reflect student learning trajectories and learning gains in the product-based learning, undergraduate engineering classroom. The aim is to expand understanding of what making learning in the context of engineering design education might be and to illustrate educational pathways within the engineering education curriculum. Making is rooted in constructionism – learning by doing and constructing knowledge through that doing. Aspects of making work and activities that are unique to making that could appear in the engineering classroom or curriculum include: sharing, practical ingenuity, personal investment, playful invention, risk taking, community building and self-directed learning. The main research questions of this work is: How do engineering students learn and apply making? What are the attributes of making in the engineering classroom? Empirical evidence of what making in the engineering classroom looks like, and how it changes over time, and how students conceptualize making through making, designerly, and engineering ways of knowing-doing-acting will come from revisiting and additional qualitative analysis of student project data collected during a product-based learning course engineering design course. To best address the research question, this proposed study proposes multiple qualitative methods to collect and analyze data on engineering students learning making. We aim to triangulate what students think they are learning, what they are being taught, and what students are demonstrating. This work is exploratory in nature. In our approach to understanding making outside of formal engineering education, at events like Maker Faires in the Maker Community, it does seem evident that there is a lot of overlap between a making mindset and a designerly way of knowing or engineering way of knowing. In the sphere of formal engineering education however, making is regularly viewed as lesser than engineering, engineering design without the engineering science or analysis. Making is not yet valued as part of formal engineering education efforts. If making is something that can be connected to beneficial student learning and is additive to the required technical content and provides a means for students to figure out what area of problems they want to tackle in the studies and beyond, it would make for a student-centered making revolution. This study advances the knowledge of the learning pathways of making by capturing empirical evidence of such learning trajectories. This study will advance the currently limited knowledge of learning in the making community and making in the engineering classroom. Initial findings generated during this study describe the learning trajectories of engineers learning making. By examining the engineering student making learning experience through the lens of cognitive science and illustrating empirical making learning trajectories, this work may impact the quality of engineering design teaching. By sharing learning trajectories across multiple communities, we seek to change the conversation by illuminating pathways for a wider array of student makers to become the makers and engineers of the future. 
    more » « less
  5. The Hispanic Serving Institution Advanced Technological Education Hub 2 (HSI ATE Hub 2) is a three-year collaborative research project funded by the National Science Foundation (NSF) that builds upon the successful outcomes of two mentoring and professional development (PD) programs in a pilot that translates foundational theory related to culturally responsive pedagogy into practice using a 3-tier scaffolded faculty PD model. The goal of HSI ATE Hub 2 is to improve outcomes for Latinx students in technician education programs through design, development, pilot, optimization, and dissemination of this model at 2-year Hispanic Serving Institutions (HSIs). The tiered PD model has been tested by two faculty cohorts at Westchester Community College (WCC), an HSI in the State University of New York (SUNY) system. In year one, Cohort A piloted the PD modules in Tier 1 which featured reflective exercises and small culturally responsive activities to try with their STEM students. In year two, Cohort A piloted the PD modules in Tier 2 and peer-mentored Cohort B as they piloted optimizations introduced to Tier 1 from Cohort A feedback. Three types of optimizations came from faculty feedback. The first considered feedback regarding delivery and/or nature of the content that influenced a subsequent module. The second involved making changes to a particular module before it was delivered to another faculty cohort. The third takes into account what worked and what didn’t to decide which content to bring into virtual webinars for the broader advanced technician education community. Dissemination of the tiered PD model has been achieved in annual webinars with the broader ATE community and at conferences for advanced technician educators to achieve broader impacts in the ATE Community. Longer term, providing professional development in culturally responsive pedagogy and practices can help existing and future faculty learn to productively engage their students in more inclusive ways. As faculty mindsets shift to asset-based thinking and a climate of mutual respect is developed, the learning environment for all students in technician education programs will improve. When students learn in a supportive environment, their chances for success increase. The professional development provided in the HSI ATE Hub 2 project will lead to longer term improvements in four ways: 1) Retainment of Culturally responsive practices by those directly engaged after the project ends; 2) Inserting top activities from the PD into national webinars to extend the reach of the training; 3) Strengthening grant proposals as faculty integrate culturally responsive strategies, knowledge and experience within their ATE proposals to the NSF; and 4) Meeting industry demand for a diverse technician workforce. This second paper in a three-part series describes ongoing progress and lessons learned in developing and piloting the 3-Tier PD model with two Cohorts of STEM faculty at a 2-year HSI. 
    more » « less