skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Methane, ethane, and propane production in Greenland ice core samples and a first isotopic characterization of excess methane
Abstract. Air trapped in polar ice provides unique records of the pastatmospheric composition ranging from key greenhouse gases such as methane(CH4) to short-lived trace gases like ethane (C2H6) andpropane (C3H8). Recently, the comparison of CH4 recordsobtained using different extraction methods revealed disagreements in theCH4 concentration for the last glacial in Greenland ice. Elevatedmethane levels were detected in dust-rich ice core sections measureddiscretely, pointing to a process sensitive to the melt extraction technique. To shed light on the underlying mechanism, we performed targeted experiments and analyzed samples for methane and the short-chain alkanes ethane and propane covering the time interval from 12 to 42 kyr. Here, we report our findings of these elevated alkane concentrations, which scale linearly with the amount of mineral dust within the ice samples. The alkane production happens during the melt extraction step of the classic wet-extraction technique and reaches 14 to 91 ppb of CH4 excess in dusty ice samples. We document for the first time a co-production of excess methane, ethane, and propane, with the observed concentrations for ethane and propane exceeding their past atmospheric background at least by a factor of 10. Independent of the produced amounts, excess alkanes were produced in a fixed molar ratio of approximately 14:2:1, indicating a shared origin. The measured carbon isotopic signature of excess methane is (-47.0±2.9) ‰ and its deuterium isotopic signature is (-326±57) ‰. With the co-production ratios of excess alkanesand the isotopic composition of excess methane we established a fingerprintthat allows us to constrain potential formation processes. This fingerprintis not in line with a microbial origin. Moreover, an adsorption–desorptionprocess of thermogenic gas on dust particles transported to Greenlanddoes not appear very likely. Instead, the alkane pattern appears to beindicative of abiotic decomposition of organic matter as found in soils andplant leaves.  more » « less
Award ID(s):
1745078
PAR ID:
10427649
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Climate of the Past
Volume:
19
Issue:
5
ISSN:
1814-9332
Page Range / eLocation ID:
999 to 1025
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present high resolution measurements of atmospheric methane (CH4) and nitrogen isotopic composition (d15N-N2) in the Greenland Ice Sheet Project Two (GISP2) Ice core. The data span Marine Isotope Stage 3, 13 to 50 thousand years (ka) before present. These datasets enhance our understanding of abrupt climate variability during the last glacial period, with a focus on Heinrich events 1 through 5. CH4 data were analyzed between 2014 and 2020 via an established wet extraction technique (Mitchell et al. 2013). Concentrations were determined via gas chromatography measurements on an Agilent 6890N and calibrated to the NOAA04 scale. d15N-N2 data were measured between 2017 and 2020 on a Finnigan MAT Delta XP via an established technique (Petrenko et al. 2006). The methane data allow for gas-phase synchronization of the GISP2 ice core to other polar ice cores from Greenland and Antarctica. The nitrogen isotopic composition data allow for reconstruction of abrupt Greenland surface climate variations. 
    more » « less
  2. The CCGG cooperative air sampling network effort began in 1967 at Niwot Ridge, Colorado. Today, the network is an international effort which includes regular discrete samples from the NOAA ESRL/GML baseline observatories, cooperative fixed sites, and commercial ships. Air samples are collected approximately weekly from a globally distributed network of sites. Samples are analyzed for Carbon Dioxide (CO2), Methane (CH4), Carbon Monoxide (CO), Hydrogen Gas (H2), Nitrous Oxide (N2O), and Sulfur Hexafluoride (SF6); and by INSTAAR for the stable isotopes of CO2 and CH4 and for many volatile organic compounds (VOC) such as ethane (C2H6), ethylene (C2H4) and propane (C3H8). Measurement data are used to identify long-term trends, seasonal variability, and spatial distribution of carbon cycle gases. 
    more » « less
  3. Methane is a major greenhouse gas and a key component of global biogeochemical cycles. Microbial methane often deviates from isotope and isotopolog equilibrium in surface environments but approaches equilibrium in deep subsurface sediments. The origin of this near-equilibrium isotopic signature in methane, whether directly produced by methanogens or achieved through anaerobic oxidation of methane (AOM), remains uncertain. Here, we show that, in the absence of AOM, microbial methane produced from deep-sea sediments exhibits isotopolog compositions approaching thermodynamic equilibrium due to energy limitation. In contrast, microbial methane from salt marsh and thermokarst lakes exhibits significant hydrogen and clumped isotopic disequilibrium due to high free-energy availability. We propose that clumped isotopologs of methane provide a proxy for characterizing the bioenergetics of environments for methane production. Together, these observations demonstrate methane clumped isotopes as a powerful tool to better understand the relation between methane metabolisms and the energy landscape in natural environments. 
    more » « less
  4. Natural gas associated with oil wells and natural gas fields is a significant source of greenhouse gas emissions and airborne pollutants. Flaring of the associated gas removes greenhouse gases like methane and other hydrocarbons. The present study explores the possibility of enhancing the flaring of associated gas mixtures (C1 – C4 alkane mixture) using nanosecond pulsed non-equilibrium plasma discharges. Starting with a detailed chemistry for C0 – C4 hydrocarbons (Aramco mechanism 3.0 – 589 species), systematic reductions are performed to obtain a smaller reduced mechanism (156 species) yet retaining the relevant kinetics of C1 – C4 alkanes at atmospheric pressure and varying equivalence ratios (φ = 0.5 – 2.0). This conventional combustion chemistry for small alkanes is then coupled with the plasma kinetics of CH4, C2H6, C3H8, and N2, including electron-impact excitations, dissociations, and ionization reactions. The newly developed plasma-based flare gas chemistry is then utilized to investigate repetitively pulsed non-equilibrium plasma-assisted reforming and subsequent combustion of the flare gas mixture diluted with N2 at different conditions. The results indicate an enhanced production of hydrogen, ethylene and other species in the reformed gas mixture, owing to the electron-impact dissociation pathways and subsequent H-abstractions and recombination reactions, thereby resulting in a mixture of CH4, H2, C2H4, C2H2, and other unsaturated C3 species. The reformed mixture shows an enhanced reactivity as exhibited by their shorter ignition delays. The reformed mixture is also observed to undergo increased methane destruction and higher equilibrium temperatures compared to the original mixture as the gas temperature increases, thereby exhibiting a potential for reducing the unburnt emissions of methane and other hydrocarbons. 
    more » « less
  5. This dataset contains snapshots of carbon dioxide and methane concentrations, total air content, stable isotope measurements of carbon dioxide, as well as measurements of molecular oxygen and nitrogen and their stable isotopic signatures. Samples come from the ALHIC1901 ice core from the Allan Hills, Antarctica. Where possible, new ages have been assigned to previous measurements from the ALHIC1503 ice core. For samples containing excess CO2 from a secondary source, estimated atmospheric CO2 ranges are included. 
    more » « less