In this paper we investigate the impact of transient noise artifacts, or glitches, on gravitational- wave inference from ground-based interferometer data, and test how modeling and subtracting these glitches affects the inferred parameters. Due to their time-frequency morphology, broadband glitches cause moderate to significant biasing of posterior distributions away from true values. In contrast, narrowband glitches induce negligible biasing effects, due to distinct signal and glitch morphologies. We inject simulated binary black hole signals into data containing three occurring glitch types from past LIGO-Virgo observing runs, and reconstruct both signal and glitch waveforms using BayesWave, a wavelet-based Bayesian analysis. We apply the standard LIGO-Virgo-KAGRA deglitching pro- cedure to the detector data, which consists of subtracting from calibrated LIGO data the glitch waveform estimated by the joint BayesWave inference. We produce posterior distributions on the parameters of the injected signal before and after subtracting the glitch, and we show that removing the transient noise effectively mitigates bias from broadband glitches. This study provides a baseline validation of existing techniques, while demonstrating waveform reconstruction improvements to the Bayesian algorithm for robust astrophysical characterization in glitch-prone detector data.
more »
« less
Inferring the astrophysical population of gravitational wave sources in the presence of noise transients
ABSTRACT The global network of interferometric gravitational wave (GW) observatories (LIGO, Virgo, KAGRA) has detected and characterized nearly 100 mergers of binary compact objects. However, many more real GWs are lurking sub-threshold, which need to be sifted from terrestrial-origin noise triggers (known as glitches). Because glitches are not due to astrophysical phenomena, inference on the glitch under the assumption it has an astrophysical source (e.g. binary black hole coalescence) results in source parameters that are inconsistent with what is known about the astrophysical population. In this work, we show how one can extract unbiased population constraints from a catalogue of both real GW events and glitch contaminants by performing Bayesian inference on their source populations simultaneously. In this paper, we assume glitches come from a specific class with a well-characterized effective population (blip glitches). We also calculate posteriors on the probability of each event in the catalogue belonging to the astrophysical or glitch class, and obtain posteriors on the number of astrophysical events in the catalogue, finding it to be consistent with the actual number of events included.
more »
« less
- Award ID(s):
- 2045740
- PAR ID:
- 10427684
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 523
- Issue:
- 4
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 5972-5984
- Size(s):
- p. 5972-5984
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Transient signals of instrumental and environmental origins (‘glitches’) in gravitational wave data elevate the false alarm rate of searches for astrophysical signals and reduce their sensitivity. Glitches that directly overlap astrophysical signals hinder their detection and worsen parameter estimation errors. As the fraction of data occupied by detectable astrophysical signals will be higher in next generation detectors, such problematic overlaps could become more frequent. These adverse effects of glitches can be mitigated by estimating and subtracting them out from the data, but their unpredictable waveforms and large morphological diversity pose a challenge. Subtraction of glitches using data from auxiliary sensors as predictors works but not for the majority of cases. Thus, there is a need for nonparametric glitch mitigation methods that do not require auxiliary data, work for a large variety of glitches, and have minimal effect on astrophysical signals in the case of overlaps. In order to cope with the high rate of glitches, it is also desirable that such methods be computationally fast. We show that adaptive spline fitting, in which the placement of free knots is optimized to estimate both smooth and non-smooth curves in noisy data, offers a promising approach to satisfying these requirements for broadband short-duration glitches, the type that appear quite frequently. The method is demonstrated on glitches drawn from three distinct classes in the Gravity Spy database as well as on the glitch that overlapped the binary neutron star signal GW170817. The impact of glitch subtraction on the GW170817 signal, or those like it injected into the data, is seen to be negligible.more » « less
-
Abstract Gravitational-wave (GW) radiation from a coalescing compact binary is a standard siren, as the luminosity distance of each event can be directly measured from the amplitude of the signal. One possibility to constrain cosmology using the GW siren is to perform statistical inference on a population of binary black hole (BBH) events. In essence, this statistical method can be viewed as follows. We can modify the shape of the distribution of observed BBH events by changing the cosmological parameters until it eventually matches the distribution constructed from an astrophysical population model, thereby allowing us to determine the cosmological parameters. In this work, we derive the Cramér–Rao bound for both cosmological parameters and those governing the astrophysical population model from this statistical dark siren method by examining the Fisher information contained in the event distribution. Our study provides analytical insights and enables fast yet accurate estimations of the statistical accuracy of dark siren cosmology. Furthermore, we consider the bias in cosmology due to unmodeled substructures in the merger rate and mass distribution. We find that a 1% deviation in the astrophysical model can lead to a more than 1% error in the Hubble constant. This could limit the accuracy of dark siren cosmology when there are more than 104BBH events detected.more » « less
-
Ground-based gravitational-wave (GW) detectors are a frontier large-scale experiment in experimental astrophysics. Given the elusive nature of GWs, the ground-based detectors have complex interacting systems made up of exquisitely sensitive instruments which makes them susceptible to terrestrial noise sources. As these noise transients - termed as glitches - appear in the detector's main data channel, they can mask or mimic real GW signals resulting in false alarms in the detection pipelines. Given their high rate of occurrence compared to astrophysical signals, it is vital to examine these glitches and probe their origin in the detector's environment and instruments in order to possibly eliminate them from the science data. In this paper we present a tensor factorization-based data mining approach to finding witness events to these glitches in the network of heterogeneous sensors that monitor the detectors and build a catalog which can aid human operators in diagnosing the sources of these noise transients. Available from: https://openreview.net/forum?id=O9q0ma6Oh5emore » « less
-
Abstract Gravitational wave (GW) interferometers are able to detect a change in distance of ~1/10 000th the size of a proton. Such sensitivity leads to large rates of non-gaussian, transient bursts of noise, also known as glitches, which hinder the detection and parameter estimation of short- and long-lived GW signals in the main detector strain. Glitches, come in a wide range of frequency-amplitude-time morphologies and may be caused by environmental or instrumental processes, so a key step towards their mitigation is to understand their population. Current approaches for their identification use supervised models to learn their morphology in the main strain with a fixed set of classes, but do not consider relevant information provided by auxiliary channels that monitor the state of the interferometers. In this work, we present an unsupervised algorithm to find anomalous glitches. Firstly, we encode a subset of auxiliary channels from Laser Interferometer Gravitational-Wave Observatory Livingston in the fractal dimension (FD), which measures the complexity of the signal. For this aim, we speed up the fractal dimension calculation to encode h of data in s. Secondly, we learn the underlying distribution of the data using an autoencoder with cyclic periodic convolutions. In this way, we learn the underlying distribution of glitches and we uncover unknown glitch morphologies, and overlaps in time between different glitches and misclassifications. This led to the discovery of anomalies in the input data. The results of this investigation stress the learnable structure of auxiliary channels encoded in FD and provide a flexible framework for glitch discovery.more » « less
An official website of the United States government
