skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Introductory Internet of Things Curriculum for Grades 9-12 Computer Science Classes
The emergence of the Internet of Things (IoT) has had a transformative effect on our society and has inspired educators to develop innovative approaches to educate the next generation of Computer Science (CS) professionals. This paper presents the design and development of an introductory IoT course suitable for grades 9-12 Computer Science classes. Information about the course content, intended outcomes, and evaluation techniques are presented. The course was introduced in 2 high schools in the US. The course includes a capstone project where the students identified a real-world problem and developed an IoT-based solution to address it. Formative and summative technical evaluation results are presented and suggest that the course provided an effective learning experience for students. The information presented here provides guiding principles for developing an IoT-based curriculum geared towards 9-12 education while also exposing the students to CS fundamental.  more » « less
Award ID(s):
2010259
PAR ID:
10427911
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2022 IEEE Frontiers in Education Conference (FIE)
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With sensors becoming increasingly ubiquitous, there is tremendous potential for innovative Internet of Things (IoT) applications across a wide variety of domains, including healthcare, agriculture, entertainment, environmental monitoring, and transportation. The rapid growth of IoT applications has increased the demand for experienced professionals with strong IoT hands-on skills. However, undergraduate students in STEM education still lack experience in how to use IoT technologies to develop such innovative applications. This is in part because the current computing curricula do not adequately cover the fundamental concepts of IoT. This paper presents a case study from integrating innovative IoT technologies into the Computer Science (CS) curriculum at Prairie View A&M University (PVAMU). This paper presents a set of IoT learning modules that can be easily integrated into existing courses of CS curriculum to engage students in smart-IoT. The modules developed have been used to introduce a new project-based course in the CS department at PVAMU that focuses on intelligent IoT technologies. Findings from external evaluation of the curricular change are also presented. These note positive impacts on student interest in and learning about IoT across multiple courses and semesters. 
    more » « less
  2. Computer Science (CS 1) offerings in most universities tend to be notoriously difficult. Over the past 60 years about a third of the students either fail or drop out of the course. Past research has focused on improving teaching methods through small changes without changing the overall course structure. The premise of our research is that restructuring the CS 1 course using a Spiral pedagogy based on principles for improving memory and recall can help students learn the information and retain it for future courses. Using the principles of Spacing, Interleaving, Elaboration, Practiced Retrieval, and Reflection, we fundamentally redesigned CS 1 with a complete reordering of topics. We evaluated the newly designed CS 1 by comparing the students with those coming from a traditional offering in terms of (1) CS 1 performance, (2) retention of students between CS 1 and 2, and (3) CS 2 performance. We demonstrate that the Spiral method helped students outperform those who learn via the traditional method by 9% on final exam scores in CS 1. Retention is increased between CS 1 and CS 2 with a 19.2% increase for women, and 9.2% overall. Furthermore, students continue to do better in CS 2 with increased grades across all assessments and show a 15% increase in passing grades. We provide a framework for the Spiral methodology so that others may replicate the design. Our results lead us to consider evaluating and improving the underlying methodology with which we teach Computer Science. 
    more » « less
  3. This study aims to examine the current experiences of high school students in computer science (CS) courses and the factors that motivated them to continue their future enrollment. The participants were 603 high school students in grades 9 through 12 in Indiana, all of whom enrolled in at least one CS course during the 2020-2021 academic year. This research revealed that fun and meaningful CS pedagogy, knowledgeable CS teachers, and relevance to their lives and future careers enabled high school students to hold positive experiences in their CS classes. These experiences impacted students to take additional CS courses. In addition to these positive experiences, gender and early exposure to CS emerge as predictors to pursue CS courses. The findings will carry significance for policymakers and educators offering insights to enhance and broaden students’ participation and engagement in the CS course. 
    more » « less
  4. This research WIP paper describes computer science undergraduate students’ perceptions of career pathways and becoming K-12 computer science teachers. Computer science (CS) education has become critical with the rapid pace of technological development to better prepare students for national technology and economic competitiveness and security. According to Code.org, 57.5% of U.S. public high schools offer foundational computer science courses in 2023; unfortunately, access to the courses remains unequal and maintains wide disparities by race/ethnicity and social class. For instance, Hispanics are 1.4 times less likely to take foundational CS courses compared to their white and Asian peers, and students with low socio-economic status are underrepresented in the overall population. The shortage of CS teachers is one of the significant barriers to why minoritized groups of students do not have equal access to learning CS. Various programmatic efforts have been implemented to address the gap, including the recruitment of undergraduate students who will earn bachelor’s degrees in computing. This approach has been considered innovative in building a new pipeline for producing highly qualified CS teachers with the ability to transform computing education and the CS teacher community rather than training in-service teachers certified in other disciplines to receive credentials to teach CS. Studies report that CS degree recipients opt for industry roles and exhibit disinterest in alternative career pathways, such as teaching because they perceive this profession as having lower salaries and unfavorable aspects associated with the job. However, we need a more prosperous and in-depth understanding of why CS degree holders consider industry jobs of greater importance rather than teaching, which would reduce the disparity in K-12 computing education. As a first attempt to better understand the perceptions of computer science undergraduate students at an Hispanic-Serving Institution (HSI), we collected qualitative data (i.e., student artifacts) in a course offered in the computer science department. Driven by social cognitive career and FIT-choice theory, our findings from the preliminary analysis indicate that CS undergraduate students at an HSI acknowledged the importance of K-12 CS teachers in their communities, but at the same time, they have more concerns about the underpayment and undervaluation of the job. They have shown a conflict between their perceptions of teaching CS and their own career aspirations as CS teachers. These preliminary findings draw attention to the importance of uncovering common career plans among CS undergraduate students. 
    more » « less
  5. This research WIP paper describes computer science undergraduate students’ perceptions of career pathways and becoming K-12 computer science teachers. Computer science (CS) education has become critical with the rapid pace of technological development to better prepare students for national technology and economic competitiveness and security. According to Code.org, 57.5% of U.S. public high schools offer foundational computer science courses in 2023; unfortunately, access to the courses remains unequal and maintains wide disparities by race/ethnicity and social class. For instance, Hispanics are 1.4 times less likely to take foundational CS courses compared to their white and Asian peers, and students with low socio-economic status are underrepresented in the overall population. The shortage of CS teachers is one of the significant barriers to why minoritized groups of students do not have equal access to learning CS. Various programmatic efforts have been implemented to address the gap, including the recruitment of undergraduate students who will earn bachelor’s degrees in computing. This approach has been considered innovative in building a new pipeline for producing highly qualified CS teachers with the ability to transform computing education and the CS teacher community rather than training in-service teachers certified in other disciplines to receive credentials to teach CS. Studies report that CS degree recipients opt for industry roles and exhibit disinterest in alternative career pathways, such as teaching because they perceive this profession as having lower salaries and unfavorable aspects associated with the job. However, we need a more prosperous and in-depth understanding of why CS degree holders consider industry jobs of greater importance rather than teaching, which would reduce the disparity in K-12 computing education. As a first attempt to better understand the perceptions of computer science undergraduate students at an Hispanic-Serving Institution (HSI), we collected qualitative data (i.e., student artifacts) in a course offered in the computer science department. Driven by social cognitive career and FIT-choice theory, our findings from the preliminary analysis indicate that CS undergraduate students at an HSI acknowledged the importance of K-12 CS teachers in their communities, but at the same time, they have more concerns about the underpayment and undervaluation of the job. They have shown a conflict between their perceptions of teaching CS and their own career aspirations as CS teachers. These preliminary findings draw attention to the importance of uncovering common career plans among CS undergraduate students. 
    more » « less