skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: How Important Are Horizontal Eddy Moisture Transports for the MJO's Eastward Propagation?
Abstract The eastward propagation of the Madden‐Julian oscillation (MJO) is known to hinge crucially on the effects of horizontal moisture advection, which involve two main types of circulation anomalies. The first are those of the MJO itself, while the second are those of embedded Rossby‐type “eddies,” which tend to be most active to the west of the MJO's convective center. To quantify the relative importance of the eddies, a novel approach is taken in which their formal definition is given by the residual of a least‐squares fit to an observed bivariate MJO index. Results show that the eddies, when defined in this way, are generally of leading importance for fostering the MJO's eastward propagation in terms of column‐integrated moisture. The picture is seen to be reversed, however, when using a traditional filter‐based method to define the eddies, which are then strictly “high‐frequency” in nature.  more » « less
Award ID(s):
1839741
PAR ID:
10427965
Author(s) / Creator(s):
 
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
50
Issue:
13
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Madden Julian Oscillation (MJO) consists of a tropical convective region that propagates eastward through the Indo‐Pacific warm pool. Decadal climate variability alters sea surface temperature patterns, affecting the MJO's basic state. This investigation examines the impact of projected SST and moisture pattern changes over the 21st Century on MJO precipitation and zonal wind amplitude changes in 80 members of the Community Earth System Model 2 Large Ensemble in the SSP370 radiative forcing scenario, each with its unique representation of decadal variability. Ensemble members with strongest MJO precipitation change in a given 20‐year period have a more El Niño‐like east Pacific warming pattern. MJO amplitude increases for east Pacific warming because of a strengthened meridional moisture gradient that supports MJO eastward propagation. A stronger vertical moisture gradient also exists for ensemble members with preferential east Pacific warming, which supports a stronger MJO under moisture mode theory. 
    more » « less
  2. Abstract The governing thermodynamics of the Madden‐Julian Oscillation (MJO) is examined using sounding and reanalysis data. On the basis of four objective criteria, results suggest that the MJO behaves like a moisture mode–a system whose thermodynamics is governed by moisture–only over the Indian Ocean. Over this basin, the MJO shows a slow convective adjustment timescale, its zonal scale is smaller, and it exhibits slow propagation, allowing moisture modes to exist. Elsewhere, the faster‐propagating wavenumber 1–2 components are more prominent preventing weak temperature gradient (WTG) balance to be established. As a result, temperature and moisture play similar roles in the MJO's thermodynamics outside the Indian Ocean. 
    more » « less
  3. Abstract The moist processes of the Madden‐Julian Oscillation (MJO) in the Coupled Model Intercomparison Project Phase 6 models are assessed using moisture mode theory‐based diagnostics over the Indian Ocean (10°S–10°N, 75°E–100°E). Results show that no model can capture all the moisture mode properties relative to the reanalysis. Most models satisfy weak temperature gradient balance but have unrealistically fast MJO propagation and a lower moisture‐precipitation correlation. Models that satisfy the most moisture mode criteria reliably simulate a stronger MJO. The background moist static energy (MSE) and low‐level zonal winds are more realistic in the models that satisfy the most criteria. The MSE budget associated with the MJO is also well‐represented in the good models. Capturing the MJO's moisture mode properties over the Indian Ocean is associated with a more realistic representation of the MJO and thus can be employed to diagnose MJO performance. 
    more » « less
  4. Abstract Recent study indicates that the non-instantaneous interaction of convection and circulation is essential for evolution of large-scale convective systems. It is incorporated into cumulus parameterization (CP) by relating cloud-base mass flux of shallow convection to a composite of subcloud moisture convergence in the past 6 h. Three pairs of 19-yr simulations with original and modified CP schemes are conducted in a tropical channel model to verify their ability to reproduce the Madden–Julian oscillation (MJO). More coherent tropical precipitation and improved eastward propagation signal are observed in the simulations with the modified CP schemes based on the non-instantaneous interaction. It is found that enhanced feedback between shallow convection and low-level moisture convergence results in amplified shallow convective heating, and then generates reinforced moisture convergence, which transports more moisture upward. The improved simulations of eastward propagation of the MJO are largely attributed to higher specific humidity below 600 hPa in the free troposphere to the east of maximum rainfall center, which is related to stronger boundary layer moisture convergence forced by shallow convection. Large-scale horizontal advection causes asymmetric moisture tendencies relative to rainfall center (positive to the east and negative to the west) and also gives rise to eastward propagation. The zonal advection, especially the advection of anomalous specific humidity by mean zonal wind, is found to dominate the difference of horizontal advection between each pair of simulations. The results indicate the vital importance of non-instantaneous feedback between shallow convection and moisture convergence for convection organization and the eastward MJO propagation. 
    more » « less
  5. Abstract The variability of the phase speed of the Madden–Julian oscillation (MJO) is poorly understood. The authors assess how the phase speed of the convective signal of the MJO associates with the background states over eastern Africa and the Indian Ocean. Relaxation of the coupling between tropical modes and their circulation has been previously linked to faster propagation; for example, the MJO speeds up over the eastern Pacific where its convective signal decouples from the circulation. In contrast, our results show that fast MJO events happen to exist during periods of wetter background states (>90 days) from East Africa across the Indian Ocean, whereas slow MJO is associated with dry background states. We found that fast MJO exhibits strong active and inactive phases with a structure suggesting more hierarchical convection. Results indicate that the association of the phase speed of the MJO as seen in the integrated filtered moist static energy with its tendency is stronger than the association of the phase speed as observed in the dry static energy with its tendency which is consistent with the acceleration of the MJO during wet background states. Also, our results indicate that the MJO may be faster during periods of enhanced low-level moisture because these periods have anomalously weak upper-tropospheric easterly background winds, which reduce the westward advection of the MJO by the background easterly wind, resulting in higher eastward phase speed of the MJO. The acceleration of the MJO by the background zonal wind overwhelms the deceleration associated with the moist-wave dynamics. Significance StatementThis study shows that the Madden–Julian oscillation (MJO), which is the dominant subseasonal weather signal in the tropics, moves eastward more quickly across eastern Africa and the Indian Ocean when the region is abnormally moist. The faster propagation does not appear to result from the higher moisture but instead from encountering weaker-than-normal upper-air winds from the east that tend to occur during moist periods. 
    more » « less